
The Science of Computing
The Art of High Performance Computing, volume 1

Evolving Copy - open for comments

Victor Eijkhout
with
Edmond Chow, Robert van de Geijn

3rd edition 2022, formatted July 5, 2023
Series reference: https://theartofhpc.com
This book is published under the CC-BY 4.0 license.

https://theartofhpc.com


Introduction to High-Performance Scientific Computing © Victor Eijkhout, distributed under a Creative
Commons Attribution 4.0 Unported (CC BY 4.0) license and made possible by funding from The Saylor
Foundation http://www.saylor.org.

http://www.saylor.org


Preface

The field of high performance scientific computing lies at the crossroads of a number of disciplines and
skill sets, and correspondingly, for someone to be successful at using high performance computing in
science requires at least elementary knowledge of and skills in all these areas. Computations stem from
an application context, so some acquaintance with physics and engineering sciences is desirable. Then,
problems in these application areas are typically translated into linear algebraic, and sometimes combina-
torial, problems, so a computational scientist needs knowledge of several aspects of numerical analysis,
linear algebra, and discrete mathematics. An efficient implementation of the practical formulations of the
application problems requires some understanding of computer architecture, both on the CPU level and
on the level of parallel computing. Finally, in addition to mastering all these sciences, a computational
scientist needs some specific skills of software management.

While good texts exist on numerical modeling, numerical linear algebra, computer architecture, parallel
computing, performance optimization, no book brings together these strands in a unified manner. The
need for a book such as the present became apparent to the author working at a computing center: users
are domain experts who not necessarily have mastery of all the background that would make them effi-
cient computational scientists. This book, then, teaches those topics that seem indispensible for scientists
engaging in large-scale computations.

This book consists largely of theoretical material on HPC. For programming and tutorials see the other
volumes in this series. The chapters in this book have exercises that can be assigned in a classroom,
however, their placement in the text is such that a reader not inclined to do exercises can simply take
them as statement of fact.

Public draft This book is open for comments. What is missing or incomplete or unclear? Is material
presented in the wrong sequence? Kindly mail me with any comments you may have.

You may have found this book in any of a number of places; the authoritative location for all my textbooks
is https://theartofhpc.com. That page also links to lulu.com where you can get a nicely printed
copy.

Victor Eijkhout eijkhout@tacc.utexas.edu
Research Scientist
Texas Advanced Computing Center
The University of Texas at Austin
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Introduction

Scientific computing is the cross-disciplinary field at the intersection of modeling scientific processes, and
the use of computers to produce quantitative results from these models. It is what takes a domain science
and turns it into a computational activity. As a definition, we may posit

The efficient computation of constructive methods in applied mathematics.

This clearly indicates the three branches of science that scientific computing touches on:

• Appliedmathematics: themathematicalmodeling of real-world phenomena. Suchmodeling often
leads to implicit descriptions, for instance in the form of partial differential equations. In order
to obtain actual tangible results we need a constructive approach.

• Numerical analysis provides algorithmic thinking about scientific models. It offers a constructive
approach to solving the implicit models, with an analysis of cost and stability.

• Computing takes numerical algorithms and analyzes the efficacy of implementing them on ac-
tually existing, rather than hypothetical, computing engines.

One might say that ‘computing’ became a scientific field in its own right, when the mathematics of real-
world phenomena was asked to be constructive, that is, to go from proving the existence of solutions to
actually obtaining them. At this point, algorithms become an object of study themselves, rather than a
mere tool.

The study of algorithms became especially important when computers were invented. Since mathemat-
ical operations now were endowed with a definable time cost, complexity of algorithms became a field
of study; since computing was no longer performed in ‘real’ numbers but in representations in finite bit-
strings, the accuracy of algorithms needed to be studied. Some of these considerations in fact predate the
existence of computers, having been inspired by computing with mechanical calculators.

A prime concern in scientific computing is efficiency. While to some scientists the abstract fact of the
existence of a solution is enough, in computing we actually want that solution, and preferably yester-
day. For this reason, in this book we will be quite specific about the efficiency of both algorithms and
hardware. It is important not to limit the concept of efficiency to that of efficient use of hardware. While
this is important, the difference between two algorithmic approaches can make optimization for specific
hardware a secondary concern.

This book aims to cover the basics of this gamut of knowledge that a successful computational scientist
needs to master. It is set up as a textbook for graduate students or advanced undergraduate students;
others can use it as a reference text, reading the exercises for their information content.
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PART I

THEORY



Chapter 1

Single-processor Computing

In order to write efficient scientific codes, it is important to understand computer architecture. The dif-
ference in speed between two codes that compute the same result can range from a few percent to orders
of magnitude, depending only on factors relating to how well the algorithms are coded for the processor
architecture. Clearly, it is not enough to have an algorithm and ‘put it on the computer’: some knowledge
of computer architecture is advisable, sometimes crucial.

Some problems can be solved on a single Central Processing Unit (CPU), others need a parallel computer
that comprises more than one processor. We will go into detail on parallel computers in the next chapter,
but even for parallel processing, it is necessary to understand the individual CPUs.

In this chapter, we will focus on what goes on inside a CPU and its memory system. We start with a brief
general discussion of how instructions are handled, then we will look into the arithmetic processing in the
processor core; last but not least, wewill devote much attention to themovement of data betweenmemory
and the processor, and inside the processor. This latter point is, maybe unexpectedly, very important,
since memory access is typically much slower than executing the processor’s instructions, making it
the determining factor in a program’s performance; the days when ‘flops (Floating Point Operations per
Second) counting’ was the key to predicting a code’s performance are long gone. This discrepancy is in
fact a growing trend, so the issue of dealing with memory traffic has been becoming more important over
time, rather than going away.

This chapter will give you a basic understanding of the issues involved in CPU design, how it affects
performance, and how you can code for optimal performance. For much more detail, see the standard
work about computer architecture, Hennesey and Patterson [100].

1.1 The von Neumann architecture

While computers, andmost relevantly for this chapter, their processors, can differ in any number of details,
they also have many aspects in common. On a very high level of abstraction, many architectures can be
described as von Neumann architectures. This describes a design with an undivided memory that stores
both program and data (‘stored program’), and a processing unit that executes the instructions, operating
on the data in ‘fetch, execute, store cycle’.
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1.1. The von Neumann architecture

Remark 1 This model with a prescribed sequence of instructions is also referred to as control flow. This is
in contrast to data flow, which we will see in section 6.12.

This setup distinguishes modern processors for the very earliest, and some special purpose contemporary,
designs where the program was hard-wired. It also allows programs to modify themselves or generate
other programs, since instructions and data are in the same storage. This allows us to have editors and
compilers: the computer treats program code as data to operate on.

Remark 2 At one time, the stored program concept was included as essential for the ability for a running
program to modify its own source. However, it was quickly recognized that this leads to unmaintainable code,
and is rarely done in practice [49].

In this book we will not explicitly discuss compilation, the process that translates high level languages to
machine instructions. (See the tutorial Tutorials book, section 2 for usage aspects.) However, on occasion
we will discuss how a program at high level can be written to ensure efficiency at the low level.

In scientific computing, however, we typically do not paymuch attention to program code, focusing almost
exclusively on data and how it is moved about during program execution. For most practical purposes it
is as if program and data are stored separately. The little that is essential about instruction handling can
be described as follows.

The machine instructions that a processor executes, as opposed to the higher level languages users write
in, typically specify the name of an operation, as well as of the locations of the operands and the result.
These locations are not expressed as memory locations, but as registers: a small number of namedmemory
locations that are part of the CPU.

Remark 3 Direct-to-memory architectures are rare, though they have existed. The Cyber 205 supercomputer
in the 1980s could have three data streams, two frommemory to the processor, and one back from the processor
to memory, going on at the same time. Such an architecture is only feasible if memory can keep up with the
processor speed, which is no longer the case these days.

As an example, here is a simple C routine

void store(double *a, double *b, double *c) {
*c = *a + *b;
}

and its X86 assembler output, obtained by gcc -O2 -S -o - store.c:
.text
.p2align 4,,15

.globl store
.type store, @function

store:
movsd (%rdi), %xmm0 # Load *a to %xmm0
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1. Single-processor Computing

addsd (%rsi), %xmm0 # Load *b and add to %xmm0
movsd %xmm0, (%rdx) # Store to *c
ret

(This is 64-bit output; add the option -m64 on 32-bit systems.)

The instructions here are:
• A load from memory to register;
• Another load, combined with an addition;
• Writing back the result to memory.

Each instruction is processed as follows:
• Instruction fetch: the next instruction according to the program counter is loaded into the pro-
cessor. We will ignore the questions of how and from where this happens.

• Instruction decode: the processor inspects the instruction to determine the operation and the
operands.

• Memory fetch: if necessary, data is brought from memory into a register.
• Execution: the operation is executed, reading data from registers and writing it back to a register.
• Write-back: for store operations, the register contents is written back to memory.

The case of array data is a little more complicated: the element loaded (or stored) is then determined as
the base address of the array plus an offset.

In a way, then, the modern CPU looks to the programmer like a von Neumann machine. There are various
ways in which this is not so. For one, while memory looks randomly addressable1, in practice there is a
concept of locality: once a data item has been loaded, nearby items are more efficient to load, and reloading
the initial item is also faster.

Another complication to this story of simple loading of data is that contemporary CPUs operate on several
instructions simultaneously, which are said to be ‘in flight’, meaning that they are in various stages of
completion. Of course, together with these simultaneous instructions, their inputs and outputs are also
being moved between memory and processor in an overlapping manner. This is the basic idea of the
superscalar CPU architecture, and is also referred to as Instruction Level Parallelism (ILP). Thus, while
each instruction can take several clock cycles to complete, a processor can complete one instruction per
cycle in favorable circumstances; in some cases more than one instruction can be finished per cycle.

The main statistic that is quoted about CPUs is their Gigahertz rating, implying that the speed of the
processor is the main determining factor of a computer’s performance. While speed obviously correlates
with performance, the story is more complicated. Some algorithms are cpu-bound, and the speed of the
processor is indeed the most important factor; other algorithms are memory-bound, and aspects such as
bus speed and cache size, to be discussed later, become important.

In scientific computing, this second category is in fact quite prominent, so in this chapter we will devote
plenty of attention to the process that moves data from memory to the processor, and we will devote
relatively little attention to the actual processor.

1. There is in fact a theoretical model for computation called the ‘Random Access Machine’; we will briefly see its parallel
generalization in section 2.2.2.

12 Introduction to High Performance Scientific Computing



1.2. Modern processors

1.2 Modern processors

Modern processors are quite complicated, and in this section we will give a short tour of what their
constituent parts. Figure 1.1 is a picture of the die of an Intel Sandy Bridge processor. This chip is about
an inch in size and contains close to a billion transistors.

1.2.1 The processing cores

In the Von Neumann model there is a single entity that executes instructions. This has not been the case
in increasing measure since the early 2000s. The Sandy Bridge pictured in figure 1.1 has eight cores, each
of which is an independent unit executing a stream of instructions. In this chapter we will mostly discuss
aspects of a single core; section 1.5 will discuss the integration aspects of the multiple cores.

1.2.1.1 Instruction handling

Figure 1.1: The Intel Sandy Bridge processor die.

The von Neumann architecture model is also
unrealistic in that it assumes that all instruc-
tions are executed strictly in sequence. In-
creasingly, over the last twenty years, pro-
cessor have used out-of-order instruction han-
dling, where instructions can be processed in
a different order than the user program spec-
ifies. Of course the processor is only allowed
to re-order instructions if that leaves the result
of the execution intact!

In the block diagram (figure 1.2) you see vari-
ous units that are concerned with instruction
handling: This cleverness actually costs con-
siderable energy, as well as sheer amount of
transistors. For this reason, processors such
as the first generation Intel Xeon Phi, the
Knights Corner , used in-order instruction han-
dling. However, in the next generation, the
Knights Landing, this decision was reversed
for reasons of performance.

1.2.1.2 Floating point units

In scientific computing we are mostly inter-
ested in what a processor does with floating
point data. Computing with integers or booleans is typically of less interest. For this reason, cores have
considerable sophistication for dealing with numerical data.

For instance, while past processors had just a single Floating Point Unit (FPU), these days they will have
multiple, capable of executing simultaneously.
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1. Single-processor Computing

For instance, often there are separate addition and multiplication units; if the compiler can find addition
and multiplication operations that are independent, it can schedule them so as to be executed simultane-
ously, thereby doubling the performance of the processor. In some cases, a processor will have multiple
addition or multiplication units.

Another way to increase performance is to have a Fused Multiply-Add (FMA) unit, which can execute the
instruction 𝑥 ← 𝑎𝑥 + 𝑏 in the same amount of time as a separate addition or multiplication. Together
with pipelining (see below), this means that a processor has an asymptotic speed of several floating point
operations per clock cycle.

Figure 1.2: Block diagram of the Intel Sandy Bridge core.

Incidentally, there are few algorithms in which division operations are a limiting factor. Correspondingly,
the division operation is not nearly as much optimized in a modern CPU as the additions and multipli-
cations are. Division operations can take 10 or 20 clock cycles, while a CPU can have multiple addition
and/or multiplication units that (asymptotically) can produce a result per cycle.

14 Introduction to High Performance Scientific Computing



1.2. Modern processors

Processor year add/mult/fma units daxpy cycles
(count×width) (arith vs load/store)

MIPS R10000 1996 1 × 1 + 1 × 1 + 0 8/24
Alpha EV5 1996 1 × 1 + 1 × 1 + 0 8/12
IBM Power5 2004 0 + 0 + 2 × 1 4/12
AMD Bulldozer 2011 2 × 2 + 2 × 2 + 0 2/4
Intel Sandy Bridge 2012 1 × 4 + 1 × 4 + 0 2/4
Intel Haswell 2014 0 + 0 + 2 × 4 1/2

Table 1.1: Floating point capabilities (per core) of several processor architectures, and DAXPY cycle num-
ber for 8 operands.

1.2.1.3 Pipelining

The floating point add and multiply units of a processor are pipelined, which has the effect that a stream
of independent operations can be performed at an asymptotic speed of one result per clock cycle.

The idea behind a pipeline is as follows. Assume that an operation consists of multiple simpler operations,
then we can potentially speed up the operation by using dedicated hardware for each suboperation. If we
now have multiple operations to perform, we get a speedup by having all suboperations active simulta-
neously: each hands its result to the next and accepts its input(s) from the previous.

For instance, an addition instruction can have the following components:

• Decoding the instruction, including finding the locations of the operands.
• Copying the operands into registers (‘data fetch’).
• Aligning the exponents; the addition .35 × 10−1 + .6 × 10−2 becomes .35 × 10−1 + .06 × 10−1.
• Executing the addition of the mantissas, in this case giving .41.
• Normalizing the result, in this example to .41 × 10−1. (Normalization in this example does not do
anything. Check for yourself that in .3 × 100 + .8 × 100 and .35 × 10−3 + (−.34) × 10−3 there is a
non-trivial adjustment.)

• Storing the result.

These parts are often called the ‘stages’ or ‘segments’ of the pipeline.

If every component is designed to finish in 1 clock cycle, the whole instruction takes 6 cycles. However,
if each has its own hardware, we can execute two operations in less than 12 cycles:

• Execute the decode stage for the first operation;
• Do the data fetch for the first operation, and at the same time the decode for the second.
• Execute the third stage for the first operation and the second stage of the second operation si-
multaneously.

• Et cetera.

You see that the first operation still takes 6 clock cycles, but the second one is finished a mere 1 cycle later.

Let us make a formal analysis of the speedup you can get from a pipeline. On a traditional FPU, producing
𝑛 results takes 𝑡(𝑛) = 𝑛ℓ𝜏 where ℓ is the number of stages, and 𝜏 the clock cycle time. The rate at which
results are produced is the reciprocal of 𝑡(𝑛)/𝑛: 𝑟serial ≡ (ℓ𝜏)−1.
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1. Single-processor Computing

On the other hand, for a pipelined FPU the time is 𝑡(𝑛) = [𝑠 + ℓ + 𝑛 − 1]𝜏 where 𝑠 is a setup cost: the first
operation still has to go through the same stages as before, but after that one more result will be produced
each cycle. We can also write this formula as

𝑡(𝑛) = [𝑛 + 𝑛1/2]𝜏 ,
expressing the linear time, plus an offset.

Figure 1.3: Schematic depiction of a pipelined operation.

Exercise 1.1. Let us compare the speed of a classical FPU, and a pipelined one. Show that the
result rate is now dependent on 𝑛: give a formula for 𝑟(𝑛), and for 𝑟∞ = lim𝑛→∞ 𝑟(𝑛).
What is the asymptotic improvement in 𝑟 over the non-pipelined case?
Next you can wonder how long it takes to get close to the asymptotic behavior. Show
that for 𝑛 = 𝑛1/2 you get 𝑟(𝑛) = 𝑟∞/2. This is often used as the definition of 𝑛1/2.

Since a vector processor works on a number of instructions simultaneously, these instructions have to
be independent. The operation ∀𝑖∶ 𝑎𝑖 ← 𝑏𝑖 + 𝑐𝑖 has independent additions; the operation ∀𝑖∶ 𝑎𝑖+1 ←
𝑎𝑖𝑏𝑖 + 𝑐𝑖 feeds the result of one iteration (𝑎𝑖) to the input of the next (𝑎𝑖+1 = …), so the operations are not
independent.

A pipelined processor can speed up operations by a factor of 4, 5, 6 with respect to earlier CPUs. Such
numbers were typical in the 1980s when the first successful vector computers came on the market. These
days, CPUs can have 20-stage pipelines. Does that mean they are incredibly fast? This question is a bit
complicated. Chip designers continue to increase the clock rate, and the pipeline segments can no longer
finish their work in one cycle, so they are further split up. Sometimes there are even segments in which
nothing happens: that time is needed to make sure data can travel to a different part of the chip in time.

16 Introduction to High Performance Scientific Computing



1.2. Modern processors

The amount of improvement you can get from a pipelined CPU is limited, so in a quest for ever higher
performance several variations on the pipeline design have been tried. For instance, the Cyber 205 had
separate addition and multiplication pipelines, and it was possible to feed one pipe into the next without
data going back to memory first. Operations like ∀𝑖∶ 𝑎𝑖 ← 𝑏𝑖 + 𝑐 ⋅ 𝑑𝑖 were called ‘linked triads’ (because of
the number of paths to memory, one input operand had to be scalar).
Exercise 1.2. Analyze the speedup and 𝑛1/2 of linked triads.
Another way to increase performance is to have multiple identical pipes. This design was perfected by
the NEC SX series. With, for instance, 4 pipes, the operation ∀𝑖∶ 𝑎𝑖 ← 𝑏𝑖 + 𝑐𝑖 would be split module 4, so
that the first pipe operated on indices 𝑖 = 4 ⋅ 𝑗, the second on 𝑖 = 4 ⋅ 𝑗 + 1, et cetera.
Exercise 1.3. Analyze the speedup and 𝑛1/2 of a processor with multiple pipelines that operate

in parallel. That is, suppose that there are 𝑝 independent pipelines, executing the same
instruction, that can each handle a stream of operands.

(You may wonder why we are mentioning some fairly old computers here: true pipeline supercomputers
hardly exist anymore. In the US, the Cray X1 was the last of that line, and in Japan only NEC still makes
them. However, the functional units of a CPU these days are pipelined, so the notion is still important.)
Exercise 1.4. The operation

for (i) {
x[i+1] = a[i]*x[i] + b[i];

}

can not be handled by a pipeline because there is a dependency between input of one
iteration of the operation and the output of the previous. However, you can transform
the loop into one that is mathematically equivalent, and potentially more efficient to
compute. Derive an expression that computes x[i+2] from x[i] without involving
x[i+1]. This is known as recursive doubling. Assume you have plenty of temporary
storage. You can now perform the calculation by

• Doing some preliminary calculations;
• computing x[i],x[i+2],x[i+4],..., and from these,
• compute the missing terms x[i+1],x[i+3],....

Analyze the efficiency of this scheme by giving formulas for 𝑇0(𝑛) and 𝑇𝑠(𝑛). Can you
think of an argument why the preliminary calculations may be of lesser importance in
some circumstances?

1.2.1.3.1 Systolic computing Pipelining as described above is one case of a systolic algorithm. In the
1980s and 1990s there was research into using pipelined algorithms and building special hardware, systolic
arrays, to implement them [126]. This is also connected to computing with Field-Programmable Gate
Arrays (FPGAs), where the systolic array is software-defined.

Section 1.8.3 does a performance study of pipelining and loop unrolling.

1.2.1.4 Peak performance

Thanks to pipelining, for modern CPUs there is a simple relation between the clock speed and the peak
performance. Since each FPU can produce one result per cycle asymptotically, the peak performance is
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1. Single-processor Computing

the clock speed times the number of independent FPUs. The measure of floating point performance is
‘floating point operations per second’, abbreviated flops. Considering the speed of computers these days,
you will mostly hear floating point performance being expressed in ‘gigaflops’: multiples of 109 flops.

1.2.2 8-bit, 16-bit, 32-bit, 64-bit

Processors are often characterized in terms of how big a chunk of data they can process as a unit. This
can relate to

• The width of the path between processor and memory: can a 64-bit floating point number be
loaded in one cycle, or does it arrive in pieces at the processor.

• The way memory is addressed: if addresses are limited to 16 bits, only 64,000 bytes can be identi-
fied. Early PCs had a complicated scheme with segments to get around this limitation: an address
was specified with a segment number and an offset inside the segment.

• The number of bits in a register, in particular the size of the integer registers which manipulate
data address; see the previous point. (Floating point register are often larger, for instance 80 bits
in the x86 architecture.) This also corresponds to the size of a chunk of data that a processor can
operate on simultaneously.

• The size of a floating point number. If the arithmetic unit of a CPU is designed to multiply 8-byte
numbers efficiently (‘double precision’; see section 3.3.2) then numbers half that size (‘single
precision’) can sometimes be processed at higher efficiency, and for larger numbers (‘quadruple
precision’) some complicated scheme is needed. For instance, a quad precision number could be
emulated by two double precision numbers with a fixed difference between the exponents.

These measurements are not necessarily identical. For instance, the original Pentium processor had 64-bit
data busses, but a 32-bit processor. On the other hand, the Motorola 68000 processor (of the original Apple
Macintosh) had a 32-bit CPU, but 16-bit data busses.

The first Intel microprocessor, the 4004, was a 4-bit processor in the sense that it processed 4 bit chunks.
These days, 64 bit processors are becoming the norm.

1.2.3 Caches: on-chip memory

The bulk of computer memory is in chips that are separate from the processor. However, there is usually
a small amount (typically a few megabytes) of on-chip memory, called the cache. This will be explained
in detail in section 1.3.4.

1.2.4 Graphics, controllers, special purpose hardware

One difference between ‘consumer’ and ‘server’ type processors is that the consumer chips devote con-
siderable real-estate on the processor chip to graphics. Processors for cell phones and tablets can even
have dedicated circuitry for security or mp3 playback. Other parts of the processor are dedicated to com-
municating with memory or the I/O subsystem. We will not discuss those aspects in this book.
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1.2.5 Superscalar processing and instruction-level parallelism

In the von Neumann architecture model, processors operate through control flow: instructions follow each
other linearly or with branches without regard for what data they involve. As processors became more
powerful and capable of executing more than one instruction at a time, it became necessary to switch to
the data flow model. Such superscalar processors analyze several instructions to find data dependencies,
and execute instructions in parallel that do not depend on each other.

This concept is also known as Instruction Level Parallelism (ILP), and it is facilitated by various mecha-
nisms:

• multiple-issue: instructions that are independent can be started at the same time;
• pipelining: arithmetic units can deal with multiple operations in various stages of completion
(section 1.2.1.3);

• branch prediction and speculative execution: a compiler can ‘guess’ whether a conditional in-
struction will evaluate to true, and execute those instructions accordingly;

• out-of-order execution: instructions can be rearranged if they are not dependent on each other,
and if the resulting execution will be more efficient;

• prefetching: data can be speculatively requested before any instruction needing it is actually en-
countered (this is discussed further in section 1.4.1).

Above, you saw pipelining in the context of floating point operations. Nowadays, the whole CPU is
pipelined. Not only floating point operations, but any sort of instruction will be put in the instruction
pipeline as soon as possible. Note that this pipeline is no longer limited to identical instructions: the no-
tion of pipeline is now generalized to any stream of partially executed instructions that are simultaneously
“in flight”.

As clock frequency has gone up, the processor pipeline has grown in length to make the segments ex-
ecutable in less time. You have already seen that longer pipelines have a larger 𝑛1/2, so more indepen-
dent instructions are needed to make the pipeline run at full efficiency. As the limits to instruction-level
parallelism are reached, making pipelines longer (sometimes called ‘deeper’) no longer pays off. This is
generally seen as the reason that chip designers have moved to multicore architectures as a way of more
efficiently using the transistors on a chip; see section 1.5.

There is a second problem with these longer pipelines: if the code comes to a branch point (a conditional
or the test in a loop), it is not clear what the next instruction to execute is. At that point the pipeline can
stall. CPUs have taken to speculative execution for instance, by always assuming that the test will turn out
true. If the code then takes the other branch (this is called a branch misprediction), the pipeline has to be
flushed and restarted. The resulting delay in the execution stream is called the branch penalty.

1.3 Memory Hierarchies

Wewill now refine the picture of the von Neumann architecture. Recall from section 1.1 that our computer
appears to execute a sequence of steps:

1. decode an instruction to determine the operands,
2. retrieve the operands from memory,
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3. execute the operation and write the result back to memory.

This picture is unrealistic because of the so-called memory wall [194], also known as the von Neumann
bottleneck: memory is too slow to load data into the process at the rate the processor can absorb it. Specifi-
cally, a single load can take 1000 cycles, while a processor can perform several operations per cycle. (After
this long wait for a load, the next load can come faster, but still too slow for the processor. This matter of
wait time versus throughput will be addressed below in section 1.3.2.)

To solve this bottleneck problem, a modern processor has several memory levels in between the FPU
and the main memory: the registers and the caches, together called the memory hierarchy. These try to
alleviate the memory wall problem by making recently used data available quicker than it would be from
main memory. Of course, this presupposes that the algorithm and its implementation allow for data to be
used multiple times. Such questions of data reuse will be discussed in more detail in section 1.7.1; in this
section we will mostly go into the technical aspects.

Both registers and caches are faster than main memory to various degrees; unfortunately, the faster the
memory on a certain level, the smaller it will be. These differences in size and access speed lead to inter-
esting programming problems, which we will discuss later in this chapter, and particularly section 1.8.

Wewill now discuss the various components of thememory hierarchy and the theoretical concepts needed
to analyze their behavior.

1.3.1 Busses

The wires that move data around in a computer, from memory to cpu or to a disc controller or screen,
are called busses. The most important one for us is the Front-Side Bus (FSB) which connects the processor
to memory. In one popular architecture, this is called the ‘north bridge’, as opposed to the ‘south bridge’
which connects to external devices, with the exception of the graphics controller.

Figure 1.4: Bus structure of a processor.

The bus is typically slower than the processor, operating with clock frequencies slightly in excess of 1GHz,
which is a fraction of the CPU clock frequency. This is one reason that caches are needed; the fact that a
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processor can consume many data items per clock tick contributes to this. Apart from the frequency, the
bandwidth of a bus is also determined by the number of bits that can be moved per clock cycle. This is
typically 64 or 128 in current architectures. We will now discuss this in some more detail.

1.3.2 Latency and Bandwidth

Above, we mentioned in very general terms that accessing data in registers is almost instantaneous,
whereas loading data from memory into the registers, a necessary step before any operation, incurs a
substantial delay. We will now make this story slightly more precise.

There are two important concepts to describe the movement of data: latency and bandwidth. The assump-
tion here is that requesting an item of data incurs an initial delay; if this item was the first in a stream of
data, usually a consecutive range of memory addresses, the remainder of the stream will arrive with no
further delay at a regular amount per time period.

Latency is the delay between the processor issuing a request for a memory item, and the item actually
arriving. We can distinguish between various latencies, such as the transfer from memory to
cache, cache to register, or summarize them all into the latency between memory and processor.
Latency is measured in (nano) seconds, or clock periods.
If a processor executes instructions in the order they are found in the assembly code, then exe-
cution will often stall while data is being fetched from memory; this is also called memory stall.
For this reason, a low latency is very important. In practice, many processors have ‘out-of-order
execution’ of instructions, allowing them to perform other operations while waiting for the re-
quested data. Programmers can take this into account, and code in a way that achieves latency
hiding; see also section 1.7.1. Graphics Processing Units (GPUs) (see section 2.9.3) can switch
very quickly between threads in order to achieve latency hiding.

Bandwidth is the rate at which data arrives at its destination, after the initial latency is overcome. Band-
width is measured in bytes (kilobytes, megabytes, gigabytes) per second or per clock cycle. The
bandwidth between two memory levels is usually the product of:

• the cycle speed of the channel (the bus speed), measured in GT/s),
• the bus width: the number of bits that can be sent simultaneously in every cycle of the bus
clock.

• the number of channels per socket,
• the number of sockets.

For example, for the TACC Frontera cluster, the computation is

bandwidth = 2.933 𝐺𝑇/𝑠 × 8Bytes/Transfer/channel × 6channels/socket × 2𝑠𝑜𝑐𝑘𝑒𝑡𝑠.
The concepts of latency and bandwidth are often combined in a formula for the time that a message takes
from start to finish:

𝑇 (𝑛) = 𝛼 + 𝛽𝑛
where 𝛼 is the latency and 𝛽 is the inverse of the bandwidth: the time per byte.

Typically, the further away from the processor one gets, the longer the latency is, and the lower the
bandwidth. These two factors make it important to program in such a way that, if at all possible, the

Victor Eijkhout 21



1. Single-processor Computing

processor uses data from cache or register, rather than from main memory. To illustrate that this is a
serious matter, consider a vector addition

for (i)
a[i] = b[i]+c[i]

Each iteration performs one floating point operation, which modern CPUs can do in one clock cycle by
using pipelines. However, each iteration needs two numbers loaded and one written, for a total of 24
bytes of memory traffic. (Actually, a[i] is loaded before it can be written, so there are 4 memory access,
with a total of 32 bytes, per iteration.) Typical memory bandwidth figures (see for instance figure 1.5) are
nowhere near 24 (or 32) bytes per cycle. This means that, without caches, algorithm performance can be
bounded by memory performance. Of course, caches will not speed up every operations, and in fact will
have no effect on the above example. Strategies for programming that lead to significant cache use are
discussed in section 1.8.

The concepts of latency and bandwidthwill also appear in parallel computers, whenwe talk about sending
data from one processor to the next.

1.3.3 Registers

Every processor has a small amount of memory that is internal to the processor: the registers, or together
the register file. The registers are what the processor actually operates on: an operation such as

a := b + c

is actually implemented as

• load the value of b from memory into a register,
• load the value of c from memory into another register,
• compute the sum and write that into yet another register, and
• write the sum value back to the memory location of a.

Looking at assembly code (for instance the output of a compiler), you see the explicit load, compute, and
store instructions.

Compute instructions such as add ormultiply only operate on registers. For instance, in assembly language
you will see instructions such as

addl %eax, %edx

which adds the content of one register to another. As you see in this sample instruction, registers are not
numbered, as opposed to memory addresses, but have distinct names that are referred to in the assembly
instruction. Typically, a processor has 16 or 32 floating point registers; the Intel Itanium was exceptional
with 128 floating point registers.

Registers have a high bandwidth and low latency because they are part of the processor. You can consider
data movement to and from registers as essentially instantaneous.
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In this chapter you will see stressed that moving data from memory is relatively expensive. Therefore, it
would be a simple optimization to leave data in register when possible. For instance, if the above compu-
tation is followed by a statement

a := b + c
d := a + e

the computed value of a could be left in register. This optimization is typically performed as a compiler
optimization: the compiler will simply not generate the instructions for storing and reloading a. We say
that a stays resident in register .

Keeping values in register is often done to avoid recomputing a quantity. For instance, in

t1 = sin(alpha) * x + cos(alpha) * y;
t2 = -cos(alpha) * x + sin(alpha) * y;

the sine and cosine quantity will probably be kept in register. You can help the compiler by explicitly
introducing temporary quantities:

s = sin(alpha); c = cos(alpha);
t1 = s * x + c * y;
t2 = -c * x + s * y

Of course, there is a limit to how many quantities can be kept in register; trying to keep too many quan-
tities in register is called register spill and lowers the performance of a code.

Keeping a variable in register is especially important if that variable appears in an inner loop. In the
computation

for i=1,length
a[i] = b[i] * c

the quantity c will probably be kept in register by the compiler, but in

for k=1,nvectors
for i=1,length

a[i,k] = b[i,k] * c[k]

it is a good idea to introduce explicitly a temporary variable to hold c[k]. In C, you can give a hint to the
compiler to keep a variable in register by declaring it as a register variable:

register double t;

However, compilers are clever enough these days about register allocation that such hints are likely to be
ignored.
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1.3.4 Caches

In between the registers, which contain the immediate input and output data for instructions, and the
main memory where lots of data can reside for a long time, are various levels of cache memory, that have
lower latency and higher bandwidth than main memory and where data are kept for an intermediate
amount of time.

Data from memory travels through the caches to wind up in registers. The advantage to having cache
memory is that if a data item is reused shortly after it was first needed, it will still be in cache, and
therefore it can be accessed much faster than if it had to be brought in from memory.

This section discusses the idea behind caches; for cache-aware programming, see

1.4 sec:coding-cachesize
.

On a historical note, the notion of levels of memory hierarchy was already discussed in 1946 [25], moti-
vated by the slowness of the memory technology at the time.

1.4.0.1 A motivating example

As an example, let’s suppose a variable x is used twice, and its uses are too far apart that it would stay
resident in register :

... = ... x ..... // instruction using x

......... // several instructions not involving x

... = ... x ..... // instruction using x

The assembly code would then be
• load x from memory into register; operate on it;
• do the intervening instructions;
• load x from memory into register; operate on it;

With a cache, the assembly code stays the same, but the actual behavior of the memory system now
becomes:

• load x from memory into cache, and from cache into register; operate on it;
• do the intervening instructions;
• request x from memory, but since it is still in the cache, load it from the cache into register;
operate on it.

Since loading from cache is faster than loading from main memory, the computation will now be faster.
Caches are fairly small, so values can not be kept there indefinitely. We will see the implications of this
in the following discussion.

There is an important difference between cache memory and registers: while data is moved into register
by explicit assembly instructions, the move from main memory to cache is entirely done by hardware.
Thus cache use and reuse is outside of direct programmer control. Later, especially in sections 1.7.2 and
1.8, you will see how it is possible to influence cache use indirectly.
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1.4.0.2 Cache tags

In the above example, the mechanism was left unspecified by which it is found whether an item is present
in cache. For this, there is a tag for each cache location: sufficient information to reconstruct the memory
location that the cache item came from.

1.4.0.3 Cache levels, speed, and size

The caches are called ‘level 1’ and ‘level 2’ (or, for short, L1 and L2) cache; some processors can have an
L3 cache. The L1 and L2 caches are part of the die, the processor chip, although for the L2 cache that is a
relatively recent development; the L3 cache is off-chip. The L1 cache is small, typically around 16 Kbyte.
Level 2 (and, when present, level 3) cache is more plentiful, up to several megabytes, but it is also slower.
Unlike main memory, which is expandable, caches are fixed in size. If a version of a processor chip exists
with a larger cache, it is usually considerably more expensive.

Data needed in some operation gets copied into the various caches on its way to the processor. If, some
instructions later, a data item is needed again, it is first searched for in the L1 cache; if it is not found there,
it is searched for in the L2 cache; if it is not found there, it is loaded from main memory. Finding data in
cache is called a cache hit, and not finding it a cache miss.

Figure 1.5 illustrates the basic facts of the cache hierarchy, in this case for the Intel Sandy Bridge chip: the
closer caches are to the FPUs, the faster, but also the smaller they are. Some points about this figure.

Figure 1.5: Memory hierarchy of an Intel Sandy Bridge, characterized by speed and size.

• Loading data from registers is so fast that it does not constitute a limitation on algorithm execu-
tion speed. On the other hand, there are few registers. Each core has 16 general purpose registers,
and 16 SIMD registers.

• The L1 cache is small, but sustains a bandwidth of 32 bytes, that is 4 double precision number,
per cycle. This is enough to load two operands each for two operations, but note that the core
can actually perform 4 operations per cycle. Thus, to achieve peak speed, certain operands need
to stay in register: typically, L1 bandwidth is enough for about half of peak performance.
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• The bandwidth of the L2 and L3 cache is nominally the same as of L1. However, this bandwidth
is partly wasted on coherence issues.

• Mainmemory access has a latency ofmore than 100 cycles, and a bandwidth of 4.5 bytes per cycle,
which is about 1/7th of the L1 bandwidth. However, this bandwidth is shared by the multiple
cores of a processor chip, so effectively the bandwidth is a fraction of this number. Most clusters
will also havemore than one socket (processor chip) per node, typically 2 or 4, so some bandwidth
is spent on maintaining cache coherence (see section 1.5), again reducing the bandwidth available
for each chip.

On level 1, there are separate caches for instructions and data; the L2 and L3 cache contain both data and
instructions.

You see that the larger caches are increasingly unable to supply data to the processors fast enough. For
this reason it is necessary to code in such a way that data is kept as much as possible in the highest cache
level possible. We will discuss this issue in detail in the rest of this chapter.

Exercise 1.5. The L1 cache is smaller than the L2 cache, and if there is an L3, the L2 is smaller
than the L3. Give a practical and a theoretical reason why this is so.

Experimental exploration of cache sizes and their relation to performance is explored in sections 1.8.4
and 24.2.

1.4.0.4 Types of cache misses

There are three types of cache misses.

As you saw in the example above, the first time you reference data youwill always incur a cachemiss. This
is known as a compulsory cache miss since these are unavoidable. Does that mean that you will always be
waiting for a data item, the first time you need it? Not necessarily: section 1.4.1 explains how the hardware
tries to help you by predicting what data is needed next.

The next type of cache misses is due to the size of your working set: a capacity cache miss is caused by data
having been overwritten because the cache can simply not contain all your problem data. (Section 1.4.0.6
discusses how the processor decides what data to overwrite.) If you want to avoid this type of misses,
you need to partition your problem in chunks that are small enough that data can stay in cache for an
appreciable time. Of course, this presumes that data items are operated on multiple times, so that there is
actually a point in keeping it in cache; this is discussed in section 1.7.1.

Finally, there are conflict misses caused by one data item being mapped to the same cache location as
another, while both are still needed for the computation, and there would have been better candidates to
evict. This is discussed in section 1.4.0.10.

In amulticore context there is a further type of cache miss: the invalidation miss. This happens if an item in
cache has become invalid because another core changed the value of the corresponding memory address.
The core will then have to reload this address.

1.4.0.5 Reuse is the name of the game

The presence of one or more caches is not immediately a guarantee for high performance: this largely
depends on the memory access pattern of the code, and how well this exploits the caches. The first time
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that an item is referenced, it is copied from memory into cache, and through to the processor registers.
The latency and bandwidth for this are not mitigated in any way by the presence of a cache. When the
same item is referenced a second time, it may be found in cache, at a considerably reduced cost in terms
of latency and bandwidth: caches have shorter latency and higher bandwidth than main memory.

We conclude that, first, an algorithm has to have an opportunity for data reuse. If every data item is used
only once (as in addition of two vectors), there can be no reuse, and the presence of caches is largely
irrelevant. A code will only benefit from the increased bandwidth and reduced latency of a cache if items
in cache are referenced more than once; see section 1.7.1 for a detailed discussion. An example would be
the matrix-vector multiplication 𝑦 = 𝐴𝑥 where each element of 𝑥 is used in 𝑛 operations, where 𝑛 is the
matrix dimension; see section 1.8.13 and exercise 1.26.

Secondly, an algorithm may theoretically have an opportunity for reuse, but it needs to be coded in such
a way that the reuse is actually exposed. We will address these points in section 1.7.2. This second point
especially is not trivial.

Some problems are small enough that they fit completely in cache, at least in the L3 cache. This is some-
thing to watch out for when benchmarking, since it gives a too rosy picture of processor performance.

1.4.0.6 Replacement policies

Data in cache and registers is placed there by the system, outside of programmer control. Likewise, the
system decides when to overwrite data in the cache or in registers if it is not referenced in a while, and as
other data needs to be placed there. Below, we will go into detail on how caches do this, but as a general
principle, a Least Recently Used (LRU) cache replacement policy is used: if a cache is full and new data
needs to be placed into it, the data that was least recently used is flushed from cache, meaning that it
is overwritten with the new item, and therefore no longer accessible. LRU is by far the most common
replacement policy; other possibilities are FIFO (first in first out) or random replacement.

Exercise 1.6. How does the LRU replacement policy related to direct-mapped versus associa-
tive caches?

Exercise 1.7. Sketch a simple scenario, and give some (pseudo) code, to argue that LRU is
preferable over FIFO as a replacement strategy.

1.4.0.7 Cache lines

Datamovement betweenmemory and cache, or between caches, is not done in single bytes, or evenwords.
Instead, the smallest unit of data moved is called a cache line, sometimes called a cache block. A typical
cache line is 64 or 128 bytes long, which in the context of scientific computing implies 8 or 16 double
precision floating point numbers. The cache line size for data moved into L2 cache can be larger than for
data moved into L1 cache.

A first motivation for cache lines is a practical one of simplification: if a cacheline is 64 bytes long, six
fewers bits need to be specified to the circuitry that moves data from memory to cache. Secondly, cache-
lines make sense since many codes show spatial locality: if one word from memory is needed, there is a
good chance that adjacent words will be pretty soon after. See section 1.7.2 for discussion.
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Figure 1.6: Accessing 4 elements at stride 1.

Conversely, there is now a strong incentive to code
in such a way to exploit this locality, since any mem-
ory access costs the transfer of several words (see sec-
tion 1.8.5 for some examples). An efficient program
then tries to use the other items on the cache line, since
access to them is effectively free. This phenomenon is
visible in code that accesses arrays by stride: elements
are read or written at regular intervals.

Stride 1 corresponds to sequential access of an array:

for (i=0; i<N; i++)
... = ... x[i] ...

Let us use as illustration a case with 4 words per cacheline. Requesting the first elements loads the whole
cacheline that contains it into cache. A request for the 2nd, 3rd, and 4th element can then be satisfied from
cache, meaning with high bandwidth and low latency.

Figure 1.7: Accessing 4 elements at stride 3.

A larger stride

for (i=0; i<N; i+=stride)
... = ... x[i] ...

implies that in every cache line only certain elements
are used. We illustrate that with stride 3: requesting
the first elements loads a cacheline, and this cacheline
also contains the second element. However, the third element is on the next cacheline, so loading this
incurs the latency and bandwidth of main memory. The same holds for the fourth element. Loading four
elements now needed loading three cache lines instead of one, meaning that two-thirds of the available
bandwidth has been wasted. (This second case would also incur three times the latency of the first, if
it weren’t for a hardware mechanism that notices the regular access patterns, and pre-emptively loads
further cachelines; see section 1.4.1.)

Some applications naturally lead to strides greater than 1, for instance, accessing only the real parts of
an array of complex numbers (for some remarks on the practical realization of complex numbers see
section 3.8.7). Also, methods that use recursive doubling often have a code structure that exhibits non-unit
strides

for (i=0; i<N/2; i++)
x[i] = y[2*i];

In this discussion of cachelines, we have implicitly assumed the beginning of a cacheline is also the be-
ginning of a word, be that an integer or a floating point number. This need not be true: an 8-byte floating
point number can be placed straddling the boundary between two cachelines. You can image that this
is not good for performance. Section 24.1.3 discusses ways to address cacheline boundary alignment in
practice.
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1.4.0.8 Cache mapping

Caches get faster, but also smaller, the closer to the FPUs they get, yet even the largest cache is considerably
smaller than the main memory size. In section 1.4.0.6 we have already discussed how the decision is made
which elements to keep and which to replace.

We will now address the issue of cache mapping, which is the question of ‘if an item is placed in cache,
where does it get placed’. This problem is generally addressed by mapping the (main memory) address
of the item to an address in cache, leading to the question ‘what if two items get mapped to the same
address’.

1.4.0.9 Direct mapped caches

The simplest cache mapping strategy is direct mapping. Suppose that memory addresses are 32 bits long,
so that they can address 4G bytes2; suppose further that the cache has 8Kwords, that is, 64K bytes, needing
16 bits to address. Direct mapping then takes from eachmemory address the last (‘least significant’) 16 bits,
and uses these as the address of the data item in cache; see figure 1.8.

Figure 1.8: Direct mapping of 32-bit addresses into a 64K cache.

Direct mapping is very efficient because its address calculations can be performed very quickly, leading to
low latency, but it has a problem in practical applications. If two items are addressed that are separated by
8Kwords, theywill bemapped to the same cache location, whichwill make certain calculations inefficient.
Example:

double A[3][8192];
for (i=0; i<512; i++)
a[2][i] = ( a[0][i]+a[1][i] )/2.;

or in Fortran:
real*8 A(8192,3);
do i=1,512
a(i,3) = ( a(i,1)+a(i,2) )/2

end do

2. We implicitly use the convention that K,M,G suffixes refer to powers of 2 rather than 10: 1K=1024, 1M=1,048,576,
1G=1,073,741,824.
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Figure 1.9: Mapping conflicts in direct mapped cache.

Here, the locations of a[0][i], a[1][i], and a[2][i] (or a(i,1),a(i,2),a(i,3)) are 8K from each
other for every i, so the last 16 bits of their addresses will be the same, and hence they will be mapped to
the same location in cache; see figure 1.9.

The execution of the loop will now go as follows:

• The data at a[0][0] is brought into cache and register. This engenders a certain amount of
latency. Together with this element, a whole cache line is transferred.

• The data at a[1][0] is brought into cache (and register, as wewill not remark anymore from now
on), together with its whole cache line, at cost of some latency. Since this cache line is mapped
to the same location as the first, the first cache line is overwritten.

• In order to write the output, the cache line containing a[2][0] is brought into memory. This is
again mapped to the same location, causing flushing of the cache line just loaded for a[1][0].

• In the next iteration, a[0][1] is needed, which is on the same cache line as a[0][0]. However,
this cache line has been flushed, so it needs to be brought in anew frommain memory or a deeper
cache level. In doing so, it overwrites the cache line that holds a[2][0].

• A similar story holds for a[1][1]: it is on the cache line of a[1][0], which unfortunately has
been overwritten in the previous step.

If a cache line holds four words, we see that each four iterations of the loop involve eight transfers of
elements of a, where two would have sufficed, if it were not for the cache conflicts.

Exercise 1.8. In the example of direct mapped caches, mapping from memory to cache was
done by using the final 16 bits of a 32 bit memory address as cache address. Show that
the problems in this example go away if the mapping is done by using the first (‘most
significant’) 16 bits as the cache address. Why is this not a good solution in general?

Remark 4 So far, we have pretended that caching is based on virtual memory addresses. In reality, caching is
based on physical addresses of the data inmemory, which depend on the algorithmmapping virtual addresses
to memory pages.

1.4.0.10 Associative caches

The problem of cache conflicts, outlined in the previous section, would be solved if any data item could
go to any cache location. In that case there would be no conflicts, other than the cache filling up, in which
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case a cache replacement policy (section 1.4.0.6) would flush data to make room for the incoming item.
Such a cache is called fully associative, and while it seems optimal, it is also very costly to build, and much
slower in use than a direct mapped cache.

For this reason, the most common solution is to have a 𝑘-way associative cache, where 𝑘 is at least two. In
this case, a data item can go to any of 𝑘 cache locations.

In this section we explore the idea of associativity; practical aspects of cache associativity are explored in
section 1.8.7.

Code would have to have a 𝑘 + 1-way conflict before data would be flushed prematurely as in the above
example. In that example, a value of 𝑘 = 2 would suffice, but in practice higher values are often encoun-
tered. Figure 1.10 illustrates the mapping of memory addresses to cache locations for a direct mapped

Figure 1.10: Two caches of 12 elements: direct mapped (left) and 3-way associative (right).

and a 3-way associative cache. Both caches have 12 elements, but these are used differently. The direct
mapped cache (left) will have a conflict between memory address 0 and 12, but in the 3-way associative
cache these two addresses can be mapped to any of three elements.

As a practical example, the Intel Woodcrest processor has an L1 cache of 32K bytes that is 8-way set
associative with a 64 byte cache line size, and an L2 cache of 4M bytes that is 8-way set associative with
a 64 byte cache line size. On the other hand, the AMD Barcelona chip has 2-way associativity for the
L1 cache, and 8-way for the L2. A higher associativity (‘way-ness’) is obviously desirable, but makes a
processor slower, since determining whether an address is already in cache becomes more complicated.
For this reason, the associativity of the L1 cache, where speed is of the greatest importance, is typically
lower than of the L2.

Exercise 1.9. Write a small cache simulator in your favorite language. Assume a 𝑘-way asso-
ciative cache of 32 entries and an architecture with 16 bit addresses. Run the following
experiment for 𝑘 = 1, 2, 4, …:

1. Let 𝑘 be the associativity of the simulated cache.
2. Write the translation from 16 bit memory addresses to 32/𝑘 cache addresses.
3. Generate 32 random machine addresses, and simulate storing them in cache.
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Since the cache has 32 entries, optimally the 32 addresses can all be stored in cache.
The chance of this actually happening is small, and often the data of one address will be
evicted from the cache (meaning that it is overwritten) when another address conflicts
with it. Record how many addresses, out of 32, are actually stored in the cache at the
end of the simulation. Do step 3 100 times, and plot the results; give median and average
value, and the standard deviation. Observe that increasing the associativity improves the
number of addresses stored. What is the limit behavior? (For bonus points, do a formal
statistical analysis.)

1.4.0.11 Cache memory versus regular memory

So what’s so special about cache memory; why don’t we use its technology for all of memory?

Caches typically consist of Static Random-Access Memory (SRAM), which is faster than Dynamic Random-
Access Memory (DRAM) used for the main memory, but is also more expensive, taking 5–6 transistors per
bit rather than one, and it draws more power.

1.4.0.12 Loads versus stores

In the above description, all data accessed in the program needs to be moved into the cache before the
instructions using it can execute. This holds both for data that is read and data that is written. However,
data that is written, and that will not be needed again (within some reasonable amount of time) has no
reason for staying in the cache, potentially creating conflicts or evicting data that can still be reused. For
this reason, compilers often have support for streaming stores: a contiguous stream of data that is purely
output will be written straight to memory, without being cached.

1.4.1 Prefetch streams

In the traditional von Neumann model (section 1.1), each instruction contains the location of its operands,
so a CPU implementing this model would make a separate request for each new operand. In practice, often
subsequent data items are adjacent or regularly spaced in memory. The memory system can try to detect
such data patterns by looking at cache miss points, and request a prefetch data stream; figure 1.11.

Figure 1.11: Prefetch stream generated by equally spaced requests.

In its simplest form, the CPUwill detect that consecutive loads come from two consecutive cache lines, and
automatically issue a request for the next following cache line. This process can be repeated or extended
if the code makes an actual request for that third cache line. Since these cache lines are now brought from
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memory well before they are needed, prefetch has the possibility of eliminating the latency for all but the
first couple of data items.

The concept of cache miss now needs to be revisited a little. From a performance point of view we are
only interested in stalls on cache misses, that is, the case where the computation has to wait for the data
to be brought in. Data that is not in cache, but can be brought in while other instructions are still being
processed, is not a problem. If an ‘L1 miss’ is understood to be only a ‘stall on miss’, then the term ‘L1
cache refill’ is used to describe all cacheline loads, whether the processor is stalling on them or not.

Since prefetch is controlled by the hardware, it is also described as hardware prefetch. Prefetch streams
can sometimes be controlled from software, for instance through intrinsics.

Introducing prefetch by the programmer is a careful balance of a number of factors [92]. Prime among
these is the prefetch distance: the number of cycles between the start of the prefetch and when the data is
needed. In practice, this is often the number of iterations of a loop: the prefetch instruction requests data
for a future iteration.

1.4.2 Concurrency and memory transfer

In the discussion about the memory hierarchy we made the point that memory is slower than the pro-
cessor. As if that is not bad enough, it is not even trivial to exploit all the bandwidth that memory offers.
In other words, if you don’t program carefully you will get even less performance than you would expect
based on the available bandwidth. Let’s analyze this.

The memory system typically has a bandwidth of more than one floating point number per cycle, so you
need to issue that many requests per cycle to utilize the available bandwidth. This would be true even with
zero latency; since there is latency, it takes a while for data to make it from memory and be processed.
Consequently, any data requested based on computations on the first data has to be requested with a delay
at least equal to the memory latency.

For full utilization of the bandwidth, at all times a volume of data equal to the bandwidth times the latency
has to be in flight. Since these data have to be independent, we get a statement of Little’s law [140]:

Concurrency = Bandwidth × Latency.
This is illustrated in figure 1.12. The problemwithmaintaining this concurrency is not that a programdoes
not have it; rather, the problem is to get the compiler and runtime system to recognize it. For instance, if a
loop traverses a long array, the compiler will not issue a large number of memory requests. The prefetch
mechanism (section 1.4.1) will issue some memory requests ahead of time, but typically not enough. Thus,
in order to use the available bandwidth, multiple streams of data need to be under way simultaneously.
Therefore, we can also phrase Little’s law as

Effective throughput = Expressed concurrency/Latency.

1.4.3 Memory banks

Above, we discussed issues relating to bandwidth. You saw that memory, and to a lesser extent caches,
have a bandwidth that is less than what a processor can maximally absorb. The situation is actually even
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Figure 1.12: Illustration of Little’s Law that states how much independent data needs to be in flight.

worse than the above discussion made it seem. For this reason, memory is often divided into memory
banks that are interleaved: with four memory banks, words 0, 4, 8, … are in bank 0, words 1, 5, 9, … are in
bank 1, et cetera.

Suppose we now access memory sequentially, then such 4-way interleavedmemory can sustain four times
the bandwidth of a single memory bank. Unfortunately, accessing by stride 2 will halve the bandwidth,
and larger strides are even worse. If two consecutive operations access the same memory bank, we speak
of a bank conflict [7]. In practice the number of memory banks will be higher, so that strided memory
access with small strides will still have the full advertised bandwidth. For instance, the Cray-1 had 16
banks, and the Cray-2 1024.

Exercise 1.10. Show that with a prime number of banks, any stride up to that number will be
conflict free. Why do you think this solution is not adopted in actual memory architec-
tures?

In modern processors, DRAM still has banks, but the effects of this are felt less because of the presence of
caches. However,GPUs have memory banks and no caches, so they suffer from some of the same problems
as the old supercomputers.

Exercise 1.11. The recursive doubling algorithm for summing the elements of an array is:
for (s=2; s<2*n; s*=2)

for (i=0; i<n-s/2; i+=s)
x[i] += x[i+s/2]

Analyze bank conflicts for this algorithm. Assume 𝑛 = 2𝑝 and banks have 2𝑘 elements
where 𝑘 < 𝑝. Also consider this as a parallel algorithm where all iterations of the inner
loop are independent, and therefore can be performed simultaneously.
Alternatively, we can use recursive halving:

for (s=(n+1)/2; s>1; s/=2)
for (i=0; i<n; i+=1)
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x[i] += x[i+s]

Again analyze bank conficts. Is this algorithm better? In the parallel case?

Cache memory can also use banks. For instance, the cache lines in the L1 cache of the AMD Barcelona chip
are 16 words long, divided into two interleaved banks of 8 words. This means that sequential access to
the elements of a cache line is efficient, but strided access suffers from a deteriorated performance.

1.4.4 TLB, pages, and virtual memory

All of a program’s data may not be in memory simultaneously. This can happen for a number of reasons:

• The computer serves multiple users, so the memory is not dedicated to any one user;
• The computer is runningmultiple programs, which together needmore than the physically avail-
able memory;

• One single program can use more data than the available memory.

For this reason, computers use virtual memory: if more memory is needed than is available, certain blocks
of memory are written to disc. In effect, the disc acts as an extension of the real memory. This means that
a block of data can be anywhere in memory, and in fact, if it is swapped in and out, it can be in different
locations at different times. Swapping does not act on individual memory locations, but rather onmemory
pages: contiguous blocks of memory, from a few kilobytes to megabytes in size. (In an earlier generation of
operating systems, moving memory to disc was a programmer’s responsibility. Pages that would replace
each other were called overlays.)

For this reason, we need a translation mechanism from the memory addresses that the program uses to
the actual addresses in memory, and this translation has to be dynamic. A program has a ‘logical data
space’ (typically starting from address zero) of the addresses used in the compiled code, and this needs to
be translated during program execution to actual memory addresses. For this reason, there is a page table
that specifies which memory pages contain which logical pages.

1.4.4.1 Large pages

In very irregular applications, for instance databases, the page table can get very large as more-or-less
random data is brought into memory. However, sometimes these pages show some amount of clustering,
meaning that if the page size had been larger, the number of needed pages would be greatly reduced. For
this reason, operating systems can have support for large pages, typically of size around 2Mb. (Sometimes
‘huge pages’ are used; for instance the Intel Knights Landing has Gigabyte pages.)

The benefits of large pages are application-dependent: if the small pages have insufficient clustering, use
of large pages may fill up memory prematurely with the unused parts of the large pages.

1.4.4.2 TLB

However, address translation by lookup in this table is slow, so CPUs have a Translation Look-aside Buffer
(TLB). The TLB is a cache of frequently used Page Table Entries: it provides fast address translation for a
number of pages. If a program needs a memory location, the TLB is consulted to see whether this location
is in fact on a page that is remembered in the TLB. If this is the case, the logical address is translated
to a physical one; this is a very fast process. The case where the page is not remembered in the TLB is
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called a TLB miss, and the page lookup table is then consulted, if necessary bringing the needed page into
memory. The TLB is (sometimes fully) associative (section 1.4.0.10), using an LRU policy (section 1.4.0.6).

A typical TLB has between 64 and 512 entries. If a program accesseses data sequentially, it will typically
alternate between just a few pages, and there will be no TLB misses. On the other hand, a program that
accesses many random memory locations can experience a slowdown because of such misses. The set of
pages that is in current use is called the ‘working set’.

Section 1.8.6 and appendix 24.5 discuss some simple code illustrating the behavior of the TLB.

[There are some complications to this story. For instance, there is usually more than one TLB. The first
one is associated with the L2 cache, the second one with the L1. In the AMD Opteron, the L1 TLB has 48
entries, and is fully (48-way) associative, while the L2 TLB has 512 entries, but is only 4-way associative.
This means that there can actually be TLB conflicts. In the discussion above, we have only talked about
the L2 TLB. The reason that this can be associated with the L2 cache, rather than with main memory, is
that the translation from memory to L2 cache is deterministic.]

Use of large pages also reduces the number of potential TLB misses, since the working set of pages can be
reduced.

1.5 Multicore architectures

In recent years, the limits of performance have been reached for the traditional processor chip design.

• Clock frequency can not be increased further, since it increases energy consumption, heating the
chips too much; see section 1.9.1.

• It is not possible to extract more Instruction Level Parallelism (ILP) from codes, either because
of compiler limitations, because of the limited amount of intrinsically available parallelism, or
because branch prediction makes it impossible (see section 1.2.5).

One of the ways of getting a higher utilization out of a single processor chip is then to move from a
strategy of further sophistication of the single processor, to a division of the chip into multiple processing
‘cores’. The separate cores canwork on unrelated tasks, or, by introducingwhat is in effect data parallelism
(section 2.3.1), collaborate on a common task at a higher overall efficiency[153].

Remark 5 Another solution is Intel’s hyperthreading, which lets a processor mix the instructions of several
instruction streams. The benefits of this are strongly dependent on the individual case. However, this same
mechanism is exploited with great success in GPUs; see section 2.9.3. For a discussion see section 2.6.1.9.

This solves the above two problems:

• Two cores at a lower frequency can have the same throughput as a single processor at a higher
frequency; hence, multiple cores are more energy-efficient.

• Discovered ILP is now replaced by explicit task parallelism, managed by the programmer.

While the firstmulticore CPUswere simply two processors on the same die, later generations incorporated
L3 or L2 caches that were shared between the two processor cores; see figure 1.13. This design makes it
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Figure 1.13: Cache hierarchy in a single-core and dual-core chip.

efficient for the cores to work jointly on the same problem. The cores would still have their own L1 cache,
and these separate caches lead to a cache coherence problem; see section 1.5.1 below.

We note that the term ‘processor’ is now ambiguous: it can refer to either the chip, or the processor
core on the chip. For this reason, we mostly talk about a socket for the whole chip and core for the part
containing one arithmetic and logic unit and having its own registers. Currently, CPUs with 4 or 6 cores
are common, even in laptops, and Intel and AMD are marketing 12-core chips. The core count is likely
to go up in the future: Intel has already shown an 80-core prototype that is developed into the 48 core
‘Single-chip Cloud Computer’, illustrated in fig 1.14. This chip has a structure with 24 dual-core ‘tiles’
that are connected through a 2D mesh network. Only certain tiles are connected to a memory controller,
others can not reach memory other than through the on-chip network.

With this mix of shared and private caches, the programming model for multicore processors is becoming
a hybrid between shared and distributed memory:

Core The cores have their own private L1 cache, which is a sort of distributed memory. The above
mentioned Intel 80-core prototype has the cores communicating in a distributedmemory fashion.

Socket On one socket, there is often a shared L2 cache, which is shared memory for the cores.
Node There can be multiple sockets on a single ‘node’ or motherboard, accessing the same shared

memory.
Network Distributed memory programming (see the next chapter) is needed to let nodes communicate.

Historically, multicore architectures have a precedent in multiprocessor shared memory designs (sec-
tion 2.4.1) such as the Sequent Symmetry and the Alliant FX/8. Conceptually the program model is the
same, but the technology now allows to shrink a multiprocessor board to a multicore chip.
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Figure 1.14: Structure of the Intel Single-chip Cloud Computer chip.

1.5.1 Cache coherence

With parallel processing, there is the potential for a conflict if more than one processor has a copy of the
same data item. The problem of ensuring that all cached data are an accurate copy of main memory is
referred to as cache coherence: if one processor alters its copy, the other copy needs to be updated.

In distributed memory architectures, a dataset is usually partitioned disjointly over the processors, so
conflicting copies of data can only arise with knowledge of the user, and it is up to the user to deal with
the problem. The case of shared memory is more subtle: since processes access the same main mem-
ory, it would seem that conflicts are in fact impossible. However, processors typically have some private
cache that contains copies of data from memory, so conflicting copies can occur. This situation arises in
particular in multicore designs.

Suppose that two cores have a copy of the same data item in their (private) L1 cache, and one modifies its
copy. Now the other has cached data that is no longer an accurate copy of its counterpart: the processor
will invalidate that copy of the item, and in fact its whole cacheline. When the process needs access to
the item again, it needs to reload that cacheline. The alternative is for any core that alters data to send
that cacheline to the other cores. This strategy probably has a higher overhead, since other cores are not
likely to have a copy of a cacheline.

This process of updating or invalidating cachelines is known asmaintaining cache coherence, and it is done
on a very low level of the processor, with no programmer involvement needed. (This makes updating
memory locations an atomic operation; more about this in section 2.6.1.5.) However, it will slow down
the computation, and it wastes bandwidth to the core that could otherwise be used for loading or storing
operands.

The state of a cache line with respect to a data item in main memory is usually described as one of the
following:

Scratch: the cache line does not contain a copy of the item;
Valid: the cache line is a correct copy of data in main memory;

Reserved: the cache line is the only copy of that piece of data;
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Dirty: the cache line has been modified, but not yet written back to main memory;
Invalid: the data on the cache line is also present on other processors (it is not reserved), and another

process has modified its copy of the data.

A simpler variant of this is the Modified-Shared-Invalid (MSI) coherence protocol, where a cache line can
be in the following states on a given core:

Modified: the cacheline has been modified, and needs to be written to the backing store. This writing can
be done when the line is evicted, or it is done immediately, depending on the write-back policy.

Shared: the line is present in at least one cache and is unmodified.
Invalid: the line is not present in the current cache, or it is present but a copy in another cache has been

modified.

These states control the movement of cachelines between memory and the caches. For instance, suppose
a core does a read to a cacheline that is invalid on that core. It can then load it from memory or get it from
another cache, which may be faster. (Finding whether a line exists (in state M or S) on another cache is
called snooping; an alternative is to maintain cache directories; see below.) If the line is Shared, it can now
simply be copied; if it is in state M in the other cache, that core first needs to write it back to memory.

Exercise 1.12. Consider two processors, a data item 𝑥 in memory, and cachelines 𝑥1,𝑥2 in the
private caches of the two processors to which 𝑥 is mapped. Describe the transitions
between the states of 𝑥1 and 𝑥2 under reads and writes of 𝑥 on the two processors. Also
indicate which actions cause memory bandwidth to be used. (This list of transitions is
a Finite State Automaton (FSA); see section 20.)

Variants of the MSI protocol add an ‘Exclusive’ or ‘Owned’ state for increased efficiency.

1.5.1.1 Solutions to cache coherence

There are two basic mechanisms for realizing cache coherence: snooping and directory-based schemes.

In the snooping mechanism, any request for data is sent to all caches, and the data is returned if it is
present anywhere; otherwise it is retrieved from memory. In a variation on this scheme, a core ‘listens in’
on all bus traffic, so that it can invalidate or update its own cacheline copies when another core modifies
its copy. Invalidating is cheaper than updating since it is a bit operation, while updating involves copying
the whole cacheline.

Exercise 1.13. When would updating pay off? Write a simple cache simulator to evaluate this
question.

Since snooping often involves broadcast information to all cores, it does not scale beyond a small number
of cores. A solution that scales better is using a tag directory: a central directory that contains the infor-
mation on what data is present in some cache, and what cache it is in specifically. For processors with
large numbers of cores (such as the Intel Xeon Phi) the directory can be distributed over the cores.

1.5.1.2 Tag directories

Inmulticore processors with distributed, but coherent, caches (such as the Intel Xeon Phi) the tag directories
can themselves be distributed. This increases the latency of cache lookup.
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1.5.2 False sharing

The cache coherence problem can even appear if the cores access different items. For instance, a declara-
tion

double x,y;

will likely allocate x and y next to each other in memory, so there is a high chance they fall on the same
cacheline. Now if one core updates x and the other y, this cacheline will continuously be moved between
the cores. This is called false sharing.

The most common case of false sharing happens when threads update consecutive locations of an array.
For instance, in the following OpenMP fragment all threads update their own location in an array of
partial results:

local_results = new double[num_threads];
#pragma omp parallel
{

int thread_num = omp_get_thread_num();
for (int i=my_lo; i<my_hi; i++)
local_results[thread_num] = ... f(i) ...

}
global_result = g(local_results)

While there is no actual race condition (as there would be if the threads all updated the global_result
variable), this code may have low performance, since the cacheline(s) with the local_result array will
continuously be invalidated.

That said, false sharing is less of a problem in modern CPUs than it used to be. Let’s consider a code that
explores the above scheme:

// falsesharing-omp.cxx
for (int spacing : {16,12,8,4,3,2,1,0} ) {

int iproc = omp_get_thread_num();
floattype *write_addr = results.data() + iproc*spacing;
for (int r=0; r<how_many_repeats; r++) {

for (int w=0; w<stream_length; w++) {
*write_addr += *( read_stream+w );

}
}

Executing this on the Intel Core i5 of an Apple Macbook Air shows a modest performance degradation:

executing: OMP_NUM_THREADS=4 OMP_PROC_BIND=true ./falsesharing-omp
Running with 4 threads; each doing stream length=9000
Spacing 16.. ran for 1393069 usec, equivalent serial time: 1.39307e+06 usec (efficiency: 100% );

operation count: 3.6e+09
Spacing 12.. ran for 1337529 usec, equivalent serial time: 1.33753e+06 usec (efficiency: 104% );

operation count: 3.6e+09
Spacing 8.. ran for 1307244 usec, equivalent serial time: 1.30724e+06 usec (efficiency: 106% );

operation count: 3.6e+09
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Spacing 4.. ran for 1368394 usec, equivalent serial time: 1.36839e+06 usec (efficiency: 101% );
operation count: 3.6e+09

Spacing 3.. ran for 1603778 usec, equivalent serial time: 1.60378e+06 usec (efficiency: 86% );
operation count: 3.6e+09

Spacing 2.. ran for 2044134 usec, equivalent serial time: 2.04413e+06 usec (efficiency: 68% );
operation count: 3.6e+09

Spacing 1.. ran for 1819370 usec, equivalent serial time: 1.81937e+06 usec (efficiency: 76% );
operation count: 3.6e+09

Spacing 0.. ran for 1811778 usec, equivalent serial time: 1.81178e+06 usec (efficiency: 76% );
operation count: 3.6e+09

On the other hand, on the Intel Cascade Lake of the TACC Frontera cluster we see no such thing:

executing: OMP_NUM_THREADS=24 OMP_PROC_BIND=close OMP_PLACES=cores ./falsesharing-omp
Running with 24 threads; each doing stream length=9000
Spacing 16.. ran for 0.001127 usec, equivalent serial time: 1127 usec (efficiency: 100% );

operation count: 1.08e+07
Spacing 12.. ran for 0.001103 usec, equivalent serial time: 1103 usec (efficiency: 102.1% );

operation count: 1.08e+07
Spacing 8.. ran for 0.001102 usec, equivalent serial time: 1102 usec (efficiency: 102.2% );

operation count: 1.08e+07
Spacing 4.. ran for 0.001102 usec, equivalent serial time: 1102 usec (efficiency: 102.2% );

operation count: 1.08e+07
Spacing 3.. ran for 0.001105 usec, equivalent serial time: 1105 usec (efficiency: 101.9% );

operation count: 1.08e+07
Spacing 2.. ran for 0.001104 usec, equivalent serial time: 1104 usec (efficiency: 102% );

operation count: 1.08e+07
Spacing 1.. ran for 0.001103 usec, equivalent serial time: 1103 usec (efficiency: 102.1% );

operation count: 1.08e+07
Spacing 0.. ran for 0.001104 usec, equivalent serial time: 1104 usec (efficiency: 102% );

operation count: 1.08e+07

The reason is that here the hardware caches the accumulator variable, and does not write to memory until
the end of the loop. This obviates all problems with false sharing.

We can force false sharing problems by forcing the writeback to memory, for instance with an OpenMP
atomic directive:

executing: OMP_NUM_THREADS=24 OMP_PROC_BIND=close OMP_PLACES=cores ./falsesharing-omp
Running with 24 threads; each doing stream length=9000
Spacing 16.. ran for 0.01019 usec, equivalent serial time: 1.019e+04 usec (efficiency: 100% );

operation count: 1.08e+07
Spacing 12.. ran for 0.01016 usec, equivalent serial time: 1.016e+04 usec (efficiency: 100.2% );

operation count: 1.08e+07
Spacing 8.. ran for 0.01016 usec, equivalent serial time: 1.016e+04 usec (efficiency: 100.2% );

operation count: 1.08e+07
Spacing 4.. ran for 0.1414 usec, equivalent serial time: 1.414e+05 usec (efficiency: 7.2% );

operation count: 1.08e+07
Spacing 3.. ran for 0.1391 usec, equivalent serial time: 1.391e+05 usec (efficiency: 7.3% );

operation count: 1.08e+07
Spacing 2.. ran for 0.184 usec, equivalent serial time: 1.84e+05 usec (efficiency: 5.5% );

operation count: 1.08e+07
Spacing 1.. ran for 0.2855 usec, equivalent serial time: 2.855e+05 usec (efficiency: 3.5% );

operation count: 1.08e+07
Spacing 0.. ran for 0.3542 usec, equivalent serial time: 3.542e+05 usec (efficiency: 2.8% );

operation count: 1.08e+07

(Of course, this has a considerable performance penalty by itself.)
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1.5.3 Computations on multicore chips

There are various ways that a multicore processor can lead to increased performance. First of all, in a
desktop situation, multiple cores can actually run multiple programs. More importantly, we can use the
parallelism to speed up the execution of a single code. This can be done in two different ways.

The MPI library (section 2.6.3.3) is typically used to communicate between processors that are connected
through a network. However, it can also be used in a single multicore processor: the MPI calls then are
realized through shared memory copies.

Alternatively, we can use the sharedmemory and shared caches and program using threaded systems such
as OpenMP (section 2.6.2). The advantage of this mode is that parallelism can be much more dynamic,
since the runtime system can set and change the correspondence between threads and cores during the
program run.

We will discuss in some detail the scheduling of linear algebra operations on multicore chips; section 6.12.

1.5.4 TLB shootdown

Section 1.4.4.2 explained how the TLB is used to cache the translation from logical address, and therefore
logical page, to physical page. The TLB is part of the memory unit of the socket, so in a multi-socket
design, it is possible for a process on one socket to change the page mapping, which makes the mapping
on the other incorrect.

One solution to this problem is called TLB shoot-down: the process changing the mapping generates an
Inter-Processor Interrupt, which causes the other processors to rebuild their TLB.

1.6 Node architecture and sockets
In the previous sections we have made our way down through the memory hierarchy, visiting registers
and various cache levels, and the extent to which they can be private or shared. At the bottom level of
the memory hierarchy is the memory that all cores share. This can range from a few Gigabyte on a lowly
laptop to a few Terabyte in some supercomputer centers.

While this memory is shared between all cores, there is some structure to it. This derives from the fact
that a cluster node can have more than one socket, that is, processor chip. The shared memory on the
node is typically spread over banks that are directly attached to one particular socket. This is for instance
illustrated in figure 1.15, which shows the four-socket node of the TACC Ranger cluster supercomputer
(no longer in production) and the two-socket node of the TACC Stampede cluster supercomputer which
contains an Intel Xeon Phi co-processor. In both designs you clearly see the memory chips that are directly
connected to the sockets.

1.6.1 Design considerations

Consider a supercomputer cluster to be built-up out of 𝑁 nodes, each of 𝑆 sockets, each with 𝐶 cores. We
can now wonder, ‘if 𝑆 > 1, why not lower 𝑆, and increase 𝑁 or 𝐶?’ Such questions have answers as much
motivated by price as by performance.
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Figure 1.15: Left: a four-socket design. Right: a two-socket design with co-processor.

• Increasing the number of cores per socket may run into limitations of chip fabrication.
• Increasing the number of cores per socket may also lower the available bandwidth per core. This
is a consideration for High-Performance Computing (HPC) applications where cores are likely
to be engaged in the same activity; for more heterogeneous workloads this may matter less.

• For fixed 𝐶 , lowering 𝑆 and increasing 𝑁 mostly raises the price because the node price is a weak
function of 𝑆.

• On the other hand, raising 𝑆 makes the node architecture more complicated, and may lower
performance because of increased complexity of maintaining coherence (section 1.5.1). Again,
this is less of an issue with heterogeneous workloads, so high values of 𝑆 are more common in
web servers than in HPC installations.

1.6.2 NUMA phenomena

The nodes illustrated above are examples of Non-Uniform Memory Access (NUMA) design: for a process
running on some core, the memory attached to its socket is slightly faster to access than the memory
attached to another socket.

One result of this is the first-touch phenomenon. Dynamically allocated memory is not actually allocated
until it’s first written to. Consider now the following OpenMP (section 2.6.2) code:

double *array = (double*)malloc(N*sizeof(double));
for (int i=0; i<N; i++)

array[i] = 1;
#pragma omp parallel for
for (int i=0; i<N; i++)

.... lots of work on array[i] ...

Because of first-touch, the array is allocated completely in the memory of the socket of the main thread.
In the subsequent parallel loop the cores of the other socket will then have slower access to the memory
they operate on.

The solution here is to also make the initialization loop parallel, even if the amount of work in it may be
negligible.
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1.7 Locality and data reuse

By now it should be clear that there is more to the execution of an algorithm than counting the operations:
the data transfer involved is important, and can in fact dominate the cost. Since we have caches and
registers, the amount of data transfer can be minimized by programming in such a way that data stays as
close to the processor as possible. Partly this is a matter of programming cleverly, but we can also look at
the theoretical question: does the algorithm allow for it to begin with.

It turns out that in scientific computing data often interacts mostly with data that is close by in some
sense, which will lead to data locality; section 1.7.2. Often such locality derives from the nature of the
application, as in the case of the PDEs you will see in chapter 4. In other cases such as molecular dynamics
(chapter 7) there is no such intrinsic locality because all particles interact with all others, and considerable
programming cleverness is needed to get high performance.

1.7.1 Data reuse and arithmetic intensity

In the previous sections you learned that processor design is somewhat unbalanced: loading data is slower
than executing the actual operations. This imbalance is large for main memory and less for the various
cache levels. Thus we are motivated to keep data in cache and keep the amount of data reuse as high as
possible.

Of course, we need to determine first if the computation allows for data to be reused. For this we define
the arithmetic intensity of an algorithm as follows:

If 𝑛 is the number of data items that an algorithm operates on, and 𝑓 (𝑛) the number of
operations it takes, then the arithmetic intensity is 𝑓 (𝑛)/𝑛.

(We canmeasure data items in either floating point numbers or bytes. The latter possibility makes it easier
to relate arithmetic intensity to hardware specifications of a processor.)

Arithmetic intensity is also related to latency hiding: the concept that you can mitigate the negative per-
formance impact of data loading behind computational activity going on. For this to work, you need more
computations than data loads to make this hiding effective. And that is the very definition of computa-
tional intensity: a high ratio of operations per byte/word/number loaded.

1.7.1.1 Example: vector operations

Consider for example the vector addition

∀𝑖∶ 𝑥𝑖 ← 𝑥𝑖 + 𝑦𝑖.
This involves three memory accesses (two loads and one store) and one operation per iteration, giving an
arithmetic intensity of 1/3.
The Basic Linear Algebra Subprograms (BLAS) axpy (for ‘a times x plus y) operation

∀𝑖∶ 𝑥𝑖 ← 𝑎 𝑥𝑖 + 𝑦𝑖
has two operations, but the same number of memory access since the one-time load of 𝑎 is amortized. It
is therefore more efficient than the simple addition, with a reuse of 2/3.
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The inner product calculation

∀𝑖∶ 𝑠 ← 𝑠 + 𝑥𝑖 ⋅ 𝑦𝑖
is similar in structure to the axpy operation, involving one multiplication and addition per iteration, on
two vectors and one scalar. However, now there are only two load operations, since 𝑠 can be kept in
register and only written back to memory at the end of the loop. The reuse here is 1.
1.7.1.2 Example: matrix operations

Next, consider the matrix-matrix product:

∀𝑖,𝑗 ∶ 𝑐𝑖𝑗 = ∑
𝑘

𝑎𝑖𝑘𝑏𝑘𝑗 .

This involves 3𝑛2 data items and 2𝑛3 operations, which is of a higher order. The arithmetic intensity
is 𝑂(𝑛), meaning that every data item will be used 𝑂(𝑛) times. This has the implication that, with suitable
programming, this operation has the potential of overcoming the bandwidth/clock speed gap by keeping
data in fast cache memory.

Exercise 1.14. The matrix-matrix product, considered as operation, clearly has data reuse by
the above definition. Argue that this reuse is not trivially attained by a simple imple-
mentation. What determines whether the naive implementation has reuse of data that
is in cache?

[In this discussion we were only concerned with the number of operations of a given implementation, not
the mathematical operation. For instance, there are ways of performing the matrix-matrix multiplication
and Gaussian elimination algorithms in fewer than 𝑂(𝑛3) operations [179, 157]. However, this requires a
different implementation, which has its own analysis in terms of memory access and reuse.]

The matrix-matrix product is the heart of the LINPACK benchmark [51]; see section 2.11.4. Using this as
the sole measure of benchmarking a computer may give an optimistic view of its performance: the matrix-
matrix product is an operation that has considerable data reuse, so it is relatively insensitive to memory
bandwidth and, for parallel computers, properties of the network. Typically, computers will attain 60–
90% of their peak performance on the Linpack benchmark. Other benchmark may give considerably lower
figures.

1.7.1.3 The roofline model

There is an elegant way of talking about how arithmetic intensity, which is a statement about the ideal
algorithm, not its implementation, interacts with hardware parameters and the actual implementation to
determine performance. This is known as the roofline model [193], and it expresses the basic fact that
performance is bounded by two factors, illustrated in the first graph of figure 1.16.

1. The peak performance, indicated by the horizontal line at the top of the graph, is an absolute
bound on the performance3, achieved only if every aspect of a CPU (pipelines, multiple floating
point units) are perfectly used. The calculation of this number is purely based on CPU properties
and clock cycle; it is assumed that memory bandwidth is not a limiting factor.

3. An old joke states that the peak performance is that number that the manufacturer guarantees you will never exceed.
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Figure 1.16: Illustration of factors determining performance in the roofline model.
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2. The number of operations per second is also limited by the product of the bandwidth, an absolute
number, and the arithmetic intensity:

operations
second

= operations
data item

⋅ data items
second

This is depicted by the linearly increasing line in the graph.

The roofline model is an elegant way of expressing that various factors lower the ceiling. For instance, if
an algorithm fails to use the full SIMD width, this imbalance lowers the attainable peak. The second graph
in figure 1.16 indicates various factors that lower the ceiling. There are also various factors that lower the
available bandwidth, such as imperfect data hiding. This is indicated by a lowering of the sloping roofline
in the third graph.

For a given arithmetic intensity, the performance is determined bywhere its vertical line intersects the roof
line. If this is at the horizontal part, the computation is called compute-bound: performance is determined
by characteristics of the processor, and bandwidth is not an issue. On the other hand, if that vertical
line intersects the sloping part of the roof, the computation is called bandwidth-bound: performance is
determined by the memory subsystem, and the full capacity of the processor is not used.

Exercise 1.15. How would you determine whether a given program kernel is bandwidth or
compute bound?

1.7.2 Locality

Since using data in cache is cheaper than getting data frommain memory, a programmer obviously wants
to code in such a way that data in cache is reused. While placing data in cache is not under explicit
programmer control, even from assembly language (low level memory access can be controlled by the
programmer in the Cell processor and in some GPUs.), in most CPUs, it is still possible, knowing the
behavior of the caches, to know what data is in cache, and to some extent to control it.

The two crucial concepts here are temporal locality and spatial locality. Temporal locality is the easiest
to explain: this describes the use of a data element within a short time of its last use. Since most caches
have an LRU replacement policy (section 1.4.0.6), if in between the two references less data has been
referenced than the cache size, the element will still be in cache and therefore be quickly accessible. With
other replacement policies, such as random replacement, this guarantee can not be made.

1.7.2.1 Temporal locality

As an example of temporal locality, consider the repeated use of a long vector:

for (loop=0; loop<10; loop++) {
for (i=0; i<N; i++) {

... = ... x[i] ...
}

}
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Each element of x will be used 10 times, but if the vector (plus other data accessed) exceeds the cache
size, each element will be flushed before its next use. Therefore, the use of x[i] does not exhibit temporal
locality: subsequent uses are spaced too far apart in time for it to remain in cache.

If the structure of the computation allows us to exchange the loops:

for (i=0; i<N; i++) {
for (loop=0; loop<10; loop++) {
... = ... x[i] ...

}
}

the elements of x are now repeatedly reused, and are therefore more likely to remain in the cache. This
rearranged code displays better temporal locality in its use of x[i].

1.7.2.2 Spatial locality

The concept of spatial locality is slightly more involved. A program is said to exhibit spatial locality
if it references memory that is ‘close’ to memory it already referenced. In the classical von Neumann
architecture with only a processor and memory, spatial locality should be irrelevant, since one address in
memory can be as quickly retrieved as any other. However, in a modern CPU with caches, the story is
different. Above, you have seen two examples of spatial locality:

• Since data is moved in cache lines rather than individual words or bytes, there is a great benefit
to coding in such a manner that all elements of the cacheline are used. In the loop

for (i=0; i<N*s; i+=s) {
... x[i] ...

}

spatial locality is a decreasing function of the stride s.
Let S be the cacheline size, then as s ranges from 1… S, the number of elements used of each
cacheline goes down from S to 1. Relatively speaking, this increases the cost of memory traffic
in the loop: if s = 1, we load 1/S cachelines per element; if s = S, we load one cacheline for each
element. This effect is demonstrated in section 1.8.5.

• A second example of spatial locality worth observing involves the TLB (section 1.4.4.2). If a pro-
gram references elements that are close together, they are likely on the same memory page, and
address translation through the TLBwill be fast. On the other hand, if a program references many
widely disparate elements, it will also be referencing many different pages. The resulting TLB
misses are very costly; see also section 1.8.6.

Exercise 1.16. Consider the following pseudocode of an algorithm for summing 𝑛 numbers 𝑥[𝑖]
where 𝑛 is a power of 2:

for s=2,4,8,...,n/2,n:
for i=0 to n-1 with steps s:
x[i] = x[i] + x[i+s/2]

sum = x[0]
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Analyze the spatial and temporal locality of this algorithm, and contrast it with the
standard algorithm

sum = 0
for i=0,1,2,...,n-1
sum = sum + x[i]

Exercise 1.17. Consider the following code, and assume that nvectors is small compared to
the cache size, and length large.

for (k=0; k<nvectors; k++)
for (i=0; i<length; i++)
a[k,i] = b[i] * c[k]

How do the following concepts relate to the performance of this code:
• Reuse
• Cache size
• Associativity

Would the following code where the loops are exchanged perform better or worse, and
why?

for (i=0; i<length; i++)
for (k=0; k<nvectors; k++)
a[k,i] = b[i] * c[k]

1.7.2.3 Examples of locality

Let us examine locality issues for a realistic example. The matrix-matrix multiplication 𝐶 ← 𝐴 ⋅ 𝐵 can be
computed in several ways. We compare two implementations, assuming that all matrices are stored by
rows, and that the cache size is insufficient to store a whole row or column.

for i=1..n
for j=1..n
for k=1..n

c[i,j] += a[i,k]*b[k,j]

for i=1..n
for k=1..n
for j=1..n
c[i,j] += a[i,k]*b[k,j]

These implementations are illustrated in figure 1.17 The first implementation constructs the (𝑖, 𝑗) element

Figure 1.17: Two loop orderings for the 𝐶 ← 𝐴 ⋅ 𝐵 matrix-matrix product.
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of 𝐶 by the inner product of a row of 𝐴 and a column of 𝐵, in the second a row of 𝐶 is updated by scaling
rows of 𝐵 by elements of 𝐴.

Our first observation is that both implementations indeed compute 𝐶 ← 𝐶 +𝐴 ⋅𝐵, and that they both take
roughly 2𝑛3 operations. However, their memory behavior, including spatial and temporal locality, is very
different.

c[i,j] In the first implementation, c[i,j] is invariant in the inner iteration, which constitutes temporal
locality, so it can be kept in register. As a result, each element of 𝐶 will be loaded and stored only
once.
In the second implementation, c[i,j] will be loaded and stored in each inner iteration. In par-
ticular, this implies that there are now 𝑛3 store operations, a factor of 𝑛 more than in the first
implementation.

a[i,k] In both implementations, a[i,k] elements are accessed by rows, so there is good spatial locality,
as each loaded cacheline will be used entirely. In the second implementation, a[i,k] is invariant
in the inner loop, which constitutes temporal locality; it can be kept in register. As a result, in
the second case 𝐴 will be loaded only once, as opposed to 𝑛 times in the first case.

b[k,j] The two implementations differ greatly in how they access the matrix 𝐵. First of all, b[k,j] is
never invariant so it will not be kept in register, and 𝐵 engenders 𝑛3 memory loads in both cases.
However, the access patterns differ.
In second case, b[k,j] is accessed by rows, so there is good spatial locality: cachelines will be
fully utilized after they are loaded.
In the first implementation, b[k,j] is accessed by columns. Because of the row storage of the
matrices, a cacheline contains a part of a row, so for each cacheline loaded, only one element is
used in the columnwise traversal. This means that the first implementation has more loads for 𝐵
by a factor of the cacheline length. There may also be TLB effects.

Note that we are not making any absolute predictions on code performance for these implementations, or
even relative comparison of their runtimes. Such predictions are very hard to make. However, the above
discussion identifies issues that are relevant for a wide range of classical CPUs.

Exercise 1.18. There are more algorithms for computing the product 𝐶 ← 𝐴 ⋅ 𝐵. Consider the
following:

for k=1..n:
for i=1..n:
for j=1..n:

c[i,j] += a[i,k]*b[k,j]

Analyze the memory traffic for the matrix 𝐶 , and show that it is worse than the two
algorithms given above.

1.7.2.4 Core locality

The above concepts of spatial and temporal locality were mostly properties of programs, although hard-
ware properties such as cacheline length and cache size play a role in analyzing the amount of locality.
There is a third type of locality that is more intimately tied to hardware: core locality. This comes into
play with multicore, multi-threaded programs.
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A code’s execution is said to exhibit core locality if write accesses that are spatially or temporally close
are performed on the same core or processing unit. Core locality is not just a property of a program, but
also to a large extent of how the program is executed in parallel.

The following issues are at play here.

• There are performance implications to cache coherence (section 1.5.1) if two cores both have a
copy of a certain cacheline in their local stores. If they both read from it there is no problem.
However, if one of them writes to it, the coherence protocol will copy the cacheline to the other
core’s local store. This takes up precious memory bandwidth, so it is to be avoided.

• Core locality will be affected if the Operating System (OS) is allowed do thread migration, thereby
invalidating cache contents. Matters of fixing thread affinity are discussed in Parallel Program-
ming book, chapter 25 and Parallel Programming book, chapter 45.

• In multi-socket systems, there is also the phenomenon of first touch: data gets allocated on the
socket where it is first initialized. This means that access from the other socket(s) may be con-
siderably slower. See Parallel Programming book, section 25.2.

1.8 Programming strategies for high performance

In this section we will look at how different ways of programming can influence the performance of a
code. This will only be an introduction to the topic.

The full listings of the codes and explanations of the data graphed here can be found in chapter 24.

1.8.1 Peak performance

For marketing purposes, it may be desirable to define a ‘top speed’ for a CPU. Since a pipelined floating
point unit can yield one result per cycle asymptotically, you would calculate the theoretical peak per-
formance as the product of the clock speed (in ticks per second), number of floating point units, and the
number of cores; see section 1.5. This top speed is unobtainable in practice, and very few codes come even
close to it. The Linpack benchmark is one of the measures how close you can get to it; the parallel version
of this benchmark is reported in the ‘top 500’; see section 2.11.4.

1.8.2 Bandwidth

You have seen in section 1.7.1.3 that algorithms can be bandwidth-bound, meaning that they are more
limited by the available bandwidth than by available processing power. In that case we can wonder if
the amount of bandwidth per core is a function of the number of cores: it is conceivable that the total
bandwidth is less than the product of the number of cores and the bandwidth to a single core.

We test this on TACC’s Frontera cluster, with dual-socket Intel Cascade Lake processors, with a total of 56
cores per node.

We let each core execute a simple streaming kernel:
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// allocation.cxx
template <typename R>
R Cache<R>::sumstream(int repeats,size_t length,size_t byte_offset /* =0 default */ ) const {

R s{0};
size_t loc_offset = byte_offset/sizeof(R);
const R *start_point = thecache.data()+loc_offset;
for (int r=0; r<repeats; r++)

for (int w=0; w<length; w++)
s += *( start_point+w ) * r;

return s;
};

and execute this on different threads and disjoint memory locations:
// bandwidth.cxx

vector<double> results(nthreads,0.);
for ( int t=0; t<nthreads; t++) {

auto start_point = t*stream_length;
threads.push_back

( thread( [=,&results] () {
results[t] = memory.sumstream(how_many_repeats,stream_length,start_point);

} ) );
}
for ( auto &t : threads )

t.join();

We see that for 40 threads there is essentially no efficiency loss, but with 56 threads there is a 10 percent
loss.

OMP_PROC_BIND=true ./bandwidth -t 56 -s 8 -k 64
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Processing 8192 words
over up to 56 threads

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Overhead for 1 threads: 66 usec
Threads 1.. ran for 136965 usec (efficiency: 100% )
Overhead for 8 threads: 187 usec
Threads 8.. ran for 137492 usec (efficiency: 99% )
Overhead for 16 threads: 260 usec
Threads 16.. ran for 137642 usec (efficiency: 99% )
Overhead for 24 threads: 406 usec
Threads 24.. ran for 137930 usec (efficiency: 99% )
Overhead for 32 threads: 559 usec
Threads 32.. ran for 138183 usec (efficiency: 99% )
Overhead for 40 threads: 793 usec
Threads 40.. ran for 138405 usec (efficiency: 98% )
Overhead for 48 threads: 1090 usec
Threads 48.. ran for 143611 usec (efficiency: 95% )
Overhead for 56 threads: 1191 usec
Threads 56.. ran for 149732 usec (efficiency: 91% )

1.8.3 Pipelining

In section 1.2.1.3 you learned that the floating point units in amodernCPU are pipelined, and that pipelines
require a number of independent operations to function efficiently. The typical pipelineable operation is
a vector addition; an example of an operation that can not be pipelined is the inner product accumulation
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for (i=0; i<N; i++)
s += a[i]*b[i];

The fact that s gets both read and written halts the addition pipeline. One way to fill the floating point
pipeline is to apply loop unrolling:

for (i = 0; i < N/2-1; i ++) {
sum1 += a[2*i] * b[2*i];
sum2 += a[2*i+1] * b[2*i+1];

}

Now there are two independent multiplies in between the accumulations. With a little indexing optimiza-
tion this becomes:

for (i = 0; i < N/2-1; i ++) {
sum1 += *(a + 0) * *(b + 0);
sum2 += *(a + 1) * *(b + 1);

a += 2; b += 2;
}

In a further optimization, we disentangle the addition andmultiplication part of each instruction. The hope
is that while the accumulation is waiting for the result of the multiplication, the intervening instructions
will keep the processor busy, in effect increasing the number of operations per second.

for (i = 0; i < N/2-1; i ++) {
temp1 = *(a + 0) * *(b + 0);
temp2 = *(a + 1) * *(b + 1);

sum1 += temp1; sum2 += temp2;

a += 2; b += 2;
}

Finally, we realize that the furthest we can move the addition away from the multiplication, is to put it
right in front of the multiplication of the next iteration:

for (i = 0; i < N/2-1; i ++) {
sum1 += temp1;
temp1 = *(a + 0) * *(b + 0);

sum2 += temp2;
temp2 = *(a + 1) * *(b + 1);

a += 2; b += 2;
}

Victor Eijkhout 53



1. Single-processor Computing

s = temp1 + temp2;

Of course, we can unroll the operation by more than a factor of two. While we expect an increased perfor-
mance because of the longer sequence of pipelined operations, large unroll factors need large numbers of
registers. Asking for more registers than a CPU has is called register spill, and it will decrease performance.

Another thing to keep in mind is that the total number of operations is unlikely to be divisible by the
unroll factor. This requires cleanup code after the loop to account for the final iterations. Thus, unrolled
code is harder to write than straight code, and people have written tools to perform such source-to-source
transformations automatically.

1.8.3.1 Semantics of unrolling

An observation about the unrollling transformation is that we are implicitly using associativity and com-
mutativity of addition: while the same quantities are added, they are now in effect added in a different
order. As you will see in chapter 3, in computer arithmetic this is not guaranteed to give the exact same
result.

For this reason, a compiler will only apply this transformation if explicitly allowed. For instance, for the
Intel compiler , the option fp-model precise indicates that code transformations should preserve the
semantics of floating point arithmetic, and unrolling is not allowed. On the other hand fp-model fast
indicates that floating point arithmetic can be sacrificed for speed.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Processing 16384 words
using memory model: fast

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Unroll 1.. ran for 518 usec (efficiency: 100% )
Unroll 2.. ran for 451 usec (efficiency: 114% )
Unroll 4.. ran for 258 usec (efficiency: 200% )
unroll factor 8 not implemented
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Processing 16384 words
using memory model: precise

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Unroll 1.. ran for 1782 usec (efficiency: 100% )
Unroll 2.. ran for 444 usec (efficiency: 401% )
Unroll 4.. ran for 256 usec (efficiency: 696% )
unroll factor 8 not implemented

1.8.4 Cache size

Above, you learned that data from L1 can be moved with lower latency and higher bandwidth than
from L2, and L2 is again faster than L3 or memory. This is easy to demonstrate with code that repeatedly
accesses the same data:

for (i=0; i<NRUNS; i++)
for (j=0; j<size; j++)
array[j] = 2.3*array[j]+1.2;
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If the size parameter allows the array to fit in cache, the operation will be relatively fast. As the size of
the dataset grows, parts of it will evict other parts from the L1 cache, so the speed of the operation will
be determined by the latency and bandwidth of the L2 cache.

Exercise 1.19. Argue that with a large enough problem and an LRU replacement policy (sec-
tion 1.4.0.6) essentially all data in the L1 will be replaced in every iteration of the outer
loop. Can you write an example code that will let some of the L1 data stay resident?

Often, it is possible to arrange the operations to keep data in L1 cache. For instance, in our example, we
could write

for (b=0; b<size/l1size; b++) {
blockstart = 0;
for (i=0; i<NRUNS; i++) {

for (j=0; j<l1size; j++)
array[blockstart+j] = 2.3*array[blockstart+j]+1.2;

}
blockstart += l1size;

}

assuming that the L1 size divides evenly in the dataset size. This strategy is called cache blocking or
blocking for cache reuse.

Remark 6 Like unrolling, blocking code may change the order of evaluation of expressions. Since floating
point arithmetic is not associative, blocking is not a transformation that compilers are allowed to make.

1.8.4.1 Measuring cache performance at user level

You can try to write a loop over a small array as above, and execute it many times, hoping to observe
performance degradation when the array gets larger than the cache size. The number of iterations should
be chosen so that the measured time is well over the resolution of your clock.

This runs into a couple of unforesoon problems. The timing for a simple loop nest

for (int irepeat=0; irepeat<how_many_repeats; irepeat++) {
for (int iword=0; iword<cachesize_in_words; iword++)

memory[iword] += 1.1;
}

may seem to be independent of the array size.

To see what the compiler does with this fragment, let your compiler generate an optimization report. For
the Intel compiler use -qopt-report. In this report you see that the compiler has decided to exchange
the loops: Each element of the array is then loaded only once.

remark #25444: Loopnest Interchanged: ( 1 2 ) --> ( 2 1 )
remark #15542: loop was not vectorized: inner loop was already vectorized
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Now it is going over the array just once, executing an accumulation loop on each element. Here the cache
size is indeed irrelevant.

In an attempt to prevent this loop exchange, you can try to make the inner loop more too complicated for
the compiler to analyze. You could for instance turn the array into a sort of linked list that you traverse:

// setup
for (int iword=0; iword<cachesize_in_words; iword++)

memory[iword] = (iword+1) % cachesize_in_words

// use:
ptr = 0
for (int iword=0; iword<cachesize_in_words; iword++)

ptr = memory[ptr];

Now the compiler will not exchange the loops, but you will still not observe the cache size threshold. The
reason for this is that with regular access the memory prefetcher kicks in: some component of the CPU
predicts what address(es) you will be requesting next, and fetches it/them in advance.

To stymie this bit of cleverness you need to make the linked list more random:

for (int iword=0; iword<cachesize_in_words; iword++)
memory[iword] = random() % cachesize_in_words

Given a sufficiently large cachesize this will be a cycle that touches all array locations, or you can explicitly
ensure this by generating a permutation of all index locations.

The code for this is given in section 24.2.

Exercise 1.20. While the strategy just sketched will demonstrate the existence of cache sizes,
it will not report the maximal bandwidth that the cache supports. What is the problem
and how would you fix it?

1.8.4.2 Detailed timing

If we have access to a cycle-accurate timer or the hardware counters, we can actually plot the number of
cycles per access.

Such a plot is given in figure 1.18. The full code is given in section 24.2.

1.8.5 Cache lines and striding

Since data is moved from memory to cache in consecutive chunks named cachelines (see section 1.4.0.7),
code that does not utilize all data in a cacheline pays a bandwidth penalty. This is born out by a simple
code

for (i=0,n=0; i<L1WORDS; i++,n+=stride)
array[n] = 2.3*array[n]+1.2;
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Figure 1.18: Average cycle count per operation as function of the dataset size.

stride nsec/word
56 cores, 3M 56 cores, 0.3M 28 cores, 3M

1 7.268 1.368 1.841
2 13.716 1.313 2.051
3 20.597 1.319 2.852
4 27.524 1.316 3.259
5 34.004 1.329 3.895
6 40.582 1.333 4.479
7 47.366 1.331 5.233
8 53.863 1.346 5.773

Table 1.2: Time per operation in nanoseconds as a function of striding on 56 cores of Frontera, per-core
datasize 3.2M.

Here, a fixed number of operations is performed, but on elements that are at distance stride. As this
stride increases, we expect an increasing runtime, which is born out by the graph in figure 1.19.

The graph also shows a decreasing reuse of cachelines, defined as the number of vector elements divided
by the number of L1 misses. To be precise, this is a miss on stall; see section 1.4.1).

The full code is given in section 24.3.

The effects of striding can be mitigated by the bandwidth and cache behavior of a processor. Consider
some run on the Intel Cascade Lake processor of the Frontera cluster at TACC, (28-cores per socket, dual
socket, for a total of 56 cores per node). We measure the time-per-operation on a simple streaming kernel,
using increasing strides. Table 1.2 reports in the second column indeed a per-operation time that goes up
linearly with the stride.
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Figure 1.19: Run time in kcycles and L1 reuse as a function of stride.

However, this is for a dataset that overflows the L2 cache. If we make this run contained in the L2 cache,
as reported in the 3rd column, this increase goes away as there is enough bandwdidth available to stream
strided data at full speed from L2 cache.

1.8.6 TLB

As explained in section 1.4.4.2, the Translation Look-aside Buffer (TLB) maintains a small list of frequently
used memory pages and their locations; addressing data that are location on one of these pages is much
faster than data that are not. Consequently, one wants to code in such a way that the number of pages
accessed is kept low.

Consider code for traversing the elements of a two-dimensional array in two different ways.

#define INDEX(i,j,m,n) i+j*m
array = (double*) malloc(m*n*sizeof(double));

/* traversal #1 */
for (j=0; j<n; j++)

for (i=0; i<m; i++)
array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

/* traversal #2 */
for (i=0; i<m; i++)
for (j=0; j<n; j++)
array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

The results (see Appendix 24.5 for the source code) are plotted in figures 1.22 and 1.21.
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Figure 1.20: Nano second per access for various core and stride counts.

Using 𝑚 = 1000 means that, on the AMD Opteron which has pages of 512 doubles, we need roughly two
pages for each column. We run this example, plotting the number ‘TLB misses’, that is, the number of
times a page is referenced that is not recorded in the TLB.

1. In the first traversal this is indeed what happens. After we touch an element, and the TLB records
the page it is on, all other elements on that page are used subsequently, so no further TLB misses
occur. Figure 1.21 shows that, with increasing 𝑛, the number of TLBmisses per column is roughly
two.

2. In the second traversal, we touch a new page for every element of the first row. Elements of the
second row will be on these pages, so, as long as the number of columns is less than the number
of TLB entries, these pages will still be recorded in the TLB. As the number of columns grows,
the number of TLB increases, and ultimately there will be one TLB miss for each element access.
Figure 1.22 shows that, with a large enough number of columns, the number of TLB misses per
column is equal to the number of elements per column.
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Figure 1.21: Number of TLB misses per column as function of the number of columns; columnwise traver-
sal of the array.

1.8.7 Cache associativity

There are many algorithms that work by recursive division of a problem, for instance the Fast Fourier
Transform (FFT) algorithm. As a result, code for such algorithms will often operate on vectors whose
length is a power of two. Unfortunately, this can cause conflicts with certain architectural features of a
CPU, many of which involve powers of two.

In section 1.4.0.9 you saw how the operation of adding a small number of vectors

∀𝑗 ∶ 𝑦𝑗 = 𝑦𝑗 +
𝑚
∑
𝑖=1

𝑥𝑖,𝑗

is a problem for direct mapped caches or set-associative caches with associativity.

As an example we take the AMD Opteron, which has an L1 cache of 64K bytes, and which is two-way
set associative. Because of the set associativity, the cache can handle two addresses being mapped to the
same cache location, but not three or more. Thus, we let the vectors be of size 𝑛 = 4096 doubles, and we
measure the effect in cache misses and cycles of letting 𝑚 = 1, 2, ….

First of all, we note that we use the vectors sequentially, so, with a cacheline of eight doubles, we should
ideally see a cache miss rate of 1/8 times the number of vectors 𝑚. Instead, in figure 1.23 we see a rate
approximately proportional to𝑚, meaning that indeed cache lines are evicted immediately. The exception
here is the case 𝑚 = 1, where the two-way associativity allows the cachelines of two vectors to stay in
cache.

Compare this to figure 1.24, where we used a slightly longer vector length, so that locations with the same
𝑗 are no longer mapped to the same cache location. As a result, we see a cache miss rate around 1/8, and
a smaller number of cycles, corresponding to a complete reuse of the cache lines.
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Figure 1.22: Number of TLB misses per column as function of the number of columns; rowwise traversal
of the array.

Two remarks: the cache miss numbers are in fact lower than the theory predicts, since the processor will
use prefetch streams. Secondly, in figure 1.24 we see a decreasing time with increasing 𝑚; this is probably
due to a progressively more favorable balance between load and store operations. Store operations are
more expensive than loads, for various reasons.

1.8.8 Loop nests

If your code has nested loops, and the iterations of the outer loop are independent, you have a choice which
loop to make outer and which to make inner.

Exercise 1.21. Give an example of a doubly-nested loop where the loops can be exchanged;
give an example where this can not be done. If at all possible, use practical examples
from this book.

If you have such choice, there are many factors that can influence your decision.

Programming language: C versus Fortran If your loop describes the (𝑖, 𝑗) indices of a two-dimensional
array, it is often best to let the 𝑖-index be in the inner loop for Fortran, and the 𝑗-index inner for C.

Exercise 1.22. Can you come up with at least two reasons why this is possibly better for per-
formance?

However, this is not a hard-and-fast rule. It can depend on the size of the loops, and other factors. For
instance, in the matrix-vector product, changing the loop ordering changes how the input and output
vectors are used.
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Figure 1.23: The number of L1 cache misses and the number of cycles for each 𝑗 column accumulation,
vector length 4096.

Parallelism model If you want to parallelize your loops with OpenMP , you generally want the outer
loop to be larger than the inner. Having a very short outer loop is definitely bad. A short inner loop can
also often be vectorized by the compiler . On the other hand, if you are targeting a GPU, you want the large
loop to be the inner one. The unit of parallel work should not have branches or loops.

Other effects of loop ordering in OpenMP are discussed in Parallel Programming book, section 19.6.2.

1.8.9 Loop tiling

In some cases performance can be increased by breaking up a loop into two nested loops, an outer one
for the blocks in the iteration space, and an inner one that goes through the block. This is known as loop
tiling: the (short) inner loop is a tile, many consecutive instances of which form the iteration space.

For instance

for (i=0; i<n; i++)
...

becomes

bs = ... /* the blocksize */
nblocks = n/bs /* assume that n is a multiple of bs */
for (b=0; b<nblocks; b++)

for (i=b*bs,j=0; j<bs; i++,j++)
...

62 Introduction to High Performance Scientific Computing



1.8. Programming strategies for high performance

Figure 1.24: The number of L1 cache misses and the number of cycles for each 𝑗 column accumulation,
vector length 4096 + 8.

For a single loop this may not make any difference, but given the right context it may. For instance, if an
array is repeatedly used, but it is too large to fit into cache:

for (n=0; n<10; n++)
for (i=0; i<100000; i++)

... = ...x[i] ...

then loop tiling may lead to a situation where the array is divided into blocks that will fit in cache:

bs = ... /* the blocksize */
for (b=0; b<100000/bs; b++)
for (n=0; n<10; n++)

for (i=b*bs; i<(b+1)*bs; i++)
... = ...x[i] ...

For this reason, loop tiling is also known as cache blocking. The block size depends on how much data is
accessed in the loop body; ideally you would try to make data reused in L1 cache, but it is also possible
to block for L2 reuse. Of course, L2 reuse will not give as high a performance as L1 reuse.

Exercise 1.23. Analyze this example.When is x brought into cache, when is it reused, andwhen
is it flushed?What is the required cache size in this example? Rewrite this example, using
a constant

#define L1SIZE 65536
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For a less trivial example, let’s look at matrix transposition 𝐴 ← 𝐵𝑡 . Ordinarily you would traverse the
input and output matrices:

// regular.c
for (int i=0; i<N; i++)

for (int j=0; j<N; j++)
A[i][j] = B[j][i];

Using blocking this becomes:
// blocked.c
for (int ii=0; ii<N; ii+=blocksize)

for (int jj=0; jj<N; jj+=blocksize)
for (int i=ii*blocksize; i<MIN(N,(ii+1)*blocksize); i++)

for (int j=jj*blocksize; j<MIN(N,(jj+1)*blocksize); j++)
A[i][j] = B[j][i];

Unlike in the example above, each element of the input and output is touched only once, so there is no
direct reuse. However, there is reuse of cachelines.

Figure 1.25: Regular and blocked traversal of a matrix.

Figure 1.25 shows how one of the matrices is traversed in a different order from its storage order, for
instance columnwise while it is stored by rows. This has the effect that each element load transfers a
cacheline, of which only one element is immediately used. In the regular traversal, this streams of cache-
lines quickly overflows the cache, and there is no reuse. In the blocked traversal, however, only a small
number of cachelines is traversed before the next element of these lines is needed. Thus there is reuse of
cachelines, or spatial locality.

Themost important example of attaining performance through blocking is thematrix!matrix product!tiling.
In section 1.7.2 we looked at the matrix-matrix multiplication, and concluded that little data could be kept
in cache. With loop tiling we can improve this situation. For instance, the standard way of writing this
product
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for i=1..n
for j=1..n

for k=1..n
c[i,j] += a[i,k]*b[k,j]

can only be optimized to keep c[i,j] in register:

for i=1..n
for j=1..n

s = 0
for k=1..n
s += a[i,k]*b[k,j]

c[i,j] += s

Using loop tiling we can keep parts of a[i,:] in cache, assuming that a is stored by rows:

for kk=1..n/bs
for i=1..n

for j=1..n
s = 0
for k=(kk-1)*bs+1..kk*bs
s += a[i,k]*b[k,j]

c[i,j] += s

1.8.10 Gradual underflow

The way a processor handles underflow can have an effect on the performance of a code. See section 3.8.1.

1.8.11 Optimization strategies

Figures 1.26 and 1.27 show that there can be wide discrepancy between the performance of naive im-
plementations of an operation (sometimes called the ‘reference implementation’), and optimized imple-
mentations. Unfortunately, optimized implementations are not simple to find. For one, since they rely
on blocking, their loop nests are double the normal depth: the matrix-matrix multiplication becomes a
six-deep loop. Then, the optimal block size is dependent on factors like the target architecture.

We make the following observations:

• Compilers are not able to extract anywhere close to optimal performance4 .
• There are autotuning projects for automatic generation of implementations that are tuned to the
architecture. This approach can be moderately to very successful. Some of the best known of
these projects are Atlas [190] for Blas kernels, and Spiral [163] for transforms.

4. Presenting a compiler with the reference implementation may still lead to high performance, since some compilers are
trained to recognize this operation. They will then forego translation and simply replace it by an optimized variant.
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Figure 1.26: Performance of naive and optimized implementations of the Discrete Fourier Transform.

Figure 1.27: Performance of naive and optimized implementations of the matrix-matrix product.

1.8.12 Cache aware and cache oblivious programming

Unlike registers and main memory, both of which can be addressed in (assembly) code, use of caches
is implicit. There is no way a programmer can load data explicitly to a certain cache, even in assembly
language.

However, it is possible to code in a ‘cache aware’ manner. Suppose a piece of code repeatedly operates on
an amount of data that is less than the cache size. We can assume that the first time the data is accessed,
it is brought into cache; the next time it is accessed it will already be in cache. On the other hand, if the
amount of data is more than the cache size5 , it will partly or fully be flushed out of cache in the process
of accessing it.

We can experimentally demonstrate this phenomenon. With a very accurate counter, the code fragment

5. We are conveniently ignoring matters of set-associativity here, and basically assuming a fully associative cache.
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for (x=0; x<NX; x++)
for (i=0; i<N; i++)

a[i] = sqrt(a[i]);

will take time linear in N up to the point where a fills the cache. An easier way to picture this is to compute
a normalized time, essentially a time per execution of the inner loop:

t = time();
for (x=0; x<NX; x++)
for (i=0; i<N; i++)

a[i] = sqrt(a[i]);
t = time()-t;
t_normalized = t/(N*NX);

The normalized time will be constant until the array a fills the cache, then increase and eventually level
off again. (See section 1.8.4 for an elaborate discussion.)

The explanation is that, as long as a[0]...a[N-1] fit in L1 cache, the inner loop will use data from the L1
cache. Speed of access is then determined by the latency and bandwidth of the L1 cache. As the amount of
data grows beyond the L1 cache size, some or all of the data will be flushed from the L1, and performance
will be determined by the characteristics of the L2 cache. Letting the amount of data grow even further,
performance will again drop to a linear behavior determined by the bandwidth from main memory.

If you know the cache size, it is possible in cases such as above to arrange the algorithm to use the cache
optimally. However, the cache size is different per processor, so this makes your code not portable, or at
least its high performance is not portable. Also, blocking for multiple levels of cache is complicated. For
these reasons, some people advocate cache oblivious programming [68].

Cache oblivious programming can be described as a way of programming that automatically uses all levels
of the cache hierarchy. This is typically done by using a divide-and-conquer strategy, that is, recursive
subdivision of a problem.

As a simple example of cache oblivious programming is the matrix transposition operation 𝐵 ← 𝐴𝑡 . First
we observe that each element of either matrix is accessed once, so the only reuse is in the utilization
of cache lines. If both matrices are stored by rows and we traverse 𝐵 by rows, then 𝐴 is traversed by
columns, and for each element accessed one cacheline is loaded. If the number of rows times the number
of elements per cacheline is more than the cachesize, lines will be evicted before they can be reused.

In a cache oblivious implementation we divide 𝐴 and 𝐵 as 2 × 2 block matrices, and recursively compute
𝐵11 ← 𝐴𝑡11, 𝐵12 ← 𝐴𝑡21, et cetera; see figure 1.28. At some point in the recursion, blocks 𝐴𝑖𝑗 will now
be small enough that they fit in cache, and the cachelines of 𝐴 will be fully used. Hence, this algorithm
improves on the simple one by a factor equal to the cacheline size.

The cache oblivious strategy can often yield improvement, but it is not necessarily optimal. In the matrix-
matrix product it improves on the naive algorithm, but it is not as good as an algorithm that is explicitly
designed to make optimal use of caches [82].

See section 6.8.4 for a discussion of such techniques in stencil computations.
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Figure 1.28: Matrix transpose operation, with simple and recursive traversal of the source matrix.

1.8.13 Case study: Matrix-vector product

Let us consider in some detail the matrix-vector product

∀𝑖,𝑗 ∶ 𝑦𝑖 ← 𝑎𝑖𝑗 ⋅ 𝑥𝑗
This involves 2𝑛2 operations on 𝑛2 + 2𝑛 data items, so reuse is 𝑂(1): memory accesses and operations are
of the same order. However, we note that there is a double loop involved, and the 𝑥, 𝑦 vectors have only
a single index, so each element in them is used multiple times.

Exploiting this theoretical reuse is not trivial. In

/* variant 1 */
for (i)

for (j)
y[i] = y[i] + a[i][j] * x[j];

the element y[i] seems to be reused. However, the statement as given here would write y[i] to memory
in every inner iteration, and we have to write the loop as

/* variant 2 */
for (i) {

s = 0;
for (j)
s = s + a[i][j] * x[j];

y[i] = s;
}

to ensure reuse. This variant uses 2𝑛2 loads and 𝑛 stores. This optimization is likely to be done by the
compiler.

This code fragment only exploits the reuse of y explicitly. If the cache is too small to hold the whole
vector x plus a column of a, each element of x is still repeatedly loaded in every outer iteration. Reversing
the loops as
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/* variant 3 */
for (j)
for (i)

y[i] = y[i] + a[i][j] * x[j];

exposes the reuse of x, especially if we write this as

/* variant 3 */
for (j) {
t = x[j];
for (i)

y[i] = y[i] + a[i][j] * t;
}

but now y is no longer reused. Moreover, we now have 2𝑛2+𝑛 loads, comparable to variant 2, but 𝑛2 stores,
which is of a higher order.

It is possible to get reuse both of 𝑥 and 𝑦 , but this requires more sophisticated programming. The key here
is to split the loops into blocks. For instance:

for (i=0; i<M; i+=2) {
s1 = s2 = 0;
for (j) {

s1 = s1 + a[i][j] * x[j];
s2 = s2 + a[i+1][j] * x[j];

}
y[i] = s1; y[i+1] = s2;

}

This is also called loopunrolling, or strip mining. The amount by which you unroll loops is determined by
the number of available registers.

1.9 Further topics

1.9.1 Power consumption

Another important topic in high performance computers is their power consumption. Here we need to
distinguish between the power consumption of a single processor chip, and that of a complete cluster.

As the number of components on a chip grows, its power consumption would also grow. Fortunately, in a
counter acting trend, miniaturization of the chip features has simultaneously been reducing the necessary
power. Suppose that the feature size 𝜆 (think: thickness of wires) is scaled down to 𝑠𝜆with 𝑠 < 1. In order to
keep the electric field in the transistor constant, the length and width of the channel, the oxide thickness,
substrate concentration density and the operating voltage are all scaled by the same factor.
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1.9.1.1 Derivation of scaling properties

The properties of constant field scaling or Dennard scaling [18, 45] are an ideal-case description of the
properties of a circuit as it is miniaturized. One important result is that power density stays constant as
chip features get smaller, and the frequency is simultaneously increased.

The basic properties derived from circuit theory are that, if we scale feature size down by 𝑠:

Feature size ∼ 𝑠
Voltage ∼ 𝑠
Current ∼ 𝑠
Frequency ∼ 𝑠

Then we can derive that

Power = 𝑉 ⋅ 𝐼 ∼ 𝑠2,
and because the total size of the circuit also goes down with 𝑠2, the power density stays the same. Thus, it
also becomes possible to put more transistors on a circuit, and essentially not change the cooling problem.

Year #transistors Processor

1975 3, 000 6502
1979 30, 000 8088
1985 300, 000 386
1989 1, 000, 000 486
1995 6, 000, 000 Pentium Pro
2000 40, 000, 000 Pentium 4
2005 100, 000, 000 2-core Pentium D
2008 700, 000, 000 8-core Nehalem
2014 6, 000, 000, 000 18-core Haswell
2017 20, 000, 000, 000 32-core AMD Epyc
2019 40, 000, 000, 000 64-core AMD Rome

Chronology of Moore’s Law (courtesy Jukka
Suomela, ‘Programming Parallel Computers’)

This result can be considered the driving force behind
Moore’s law, which states that the number of transis-
tors in a processor doubles every 18 months.

The frequency-dependent part of the power a proces-
sor needs comes from charging and discharging the
capacitance of the circuit, so

Charge 𝑞 = 𝐶𝑉
Work 𝑊 = 𝑞𝑉 = 𝐶𝑉 2
Power 𝑊/time = 𝑊𝐹 = 𝐶𝑉 2𝐹

(1.1)

This analysis can be used to justify the introduction of
multicore processors.

1.9.1.2 Multicore

At the time of this writing (circa 2010), miniaturization
of components has almost come to a standstill, because
further lowering of the voltage would give prohibitive
leakage. Conversely, the frequency can not be scaled
up since this would raise the heat production of the
chip too far. Figure 1.29 gives a dramatic illustration of the heat that a chip would give off, if single-
processor trends had continued.

One conclusion is that computer design is running into a power wall, where the sophistication of a single
core can not be increased any further (so we can for instance no longer increase ILP and pipeline depth)
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Figure 1.29: Projected heat dissipation of a CPU if trends had continued – this graph courtesy Pat
Helsinger.

and the only way to increase performance is to increase the amount of explicitly visible parallelism. This
development has led to the current generation of multicore processors; see section 1.5. It is also the reason
GPUs with their simplified processor design and hence lower energy consumption are attractive; the same
holds for FPGAs. One solution to the power wall problem is introduction of multicore processors. Recall
equation 1.1, and compare a single processor to two processors at half the frequency. That should have
the same computing power, right? Since we lowered the frequency, we can lower the voltage if we stay
with the same process technology.

The total electric power for the two processors (cores) is, ideally,

𝐶multi = 2𝐶
𝐹multi = 𝐹/2
𝑉multi = 𝑉/2

} ⇒ 𝑃multi = 𝑃/4.

In practice the capacitance will go up by a little over 2, and the voltage can not quite be dropped by 2, so it
is more likely that 𝑃multi ≈ 0.4 × 𝑃 [30]. Of course the integration aspects are a little more complicated in
practice [19]; the important conclusion is that now, in order to lower the power (or, conversely, to allow
further increase in performance while keeping the power constant) we now have to start programming
in parallel.

1.9.1.3 Total computer power

The total power consumption of a parallel computer is determined by the consumption per processor
and the number of processors in the full machine. At present, this is commonly several Megawatts. By the
above reasoning, the increase in power needed from increasing the number of processors can no longer be
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offset by more power-effective processors, so power is becoming the overriding consideration as parallel
computers move from the petascale (attained in 2008 by the IBM Roadrunner) to a projected exascale.

In the most recent generations of processors, power is becoming an overriding consideration, with influ-
ence in unlikely places. For instance, the Single Instruction Multiple Data (SIMD) design of processors
(see section 2.3.1, in particular section 2.3.1.2) is dictated by the power cost of instruction decoding.

1.9.2 Operating system effects

HPC practitioners typically don’t worry much about the OS|textbf. However, sometimes the presence
of the OS can be felt, influencing performance. The reason for this is the periodic interrupt, where the
operating system upwards of 100 times per second interrupts the current process to let another process
or a system daemon have a time slice.

If you are running basically one program, you don’t want the overhead and jitter , the unpredictability of
process runtimes, this introduces. Therefore, computers have existed that basically dispensed with having
an OS to increase performance.

The periodic interrupt has further negative effects. For instance, it pollutes the cache and TLB. As a fine-
grained effect of jitter, it degrades performance of codes that rely on barriers between threads, such as
frequently happens in OpenMP (section 2.6.2).

In particular in financial applications, where very tight synchronization is important, have adopted a Linux
kernel mode where the periodic timer ticks only once a second, rather than hundreds of times. This is
called a tickless kernel.

1.10 Review questions

For the true/false questions, give short explanation if you choose the ‘false’ answer.

Exercise 1.24. True or false. The code
for (i=0; i<N; i++)

a[i] = b[i]+1;

touches every element of a and b once, so there will be a cache miss for each element.

Exercise 1.25. Give an example of a code fragment where a 3-way associative cache will have
conflicts, but a 4-way cache will not.

Exercise 1.26. Consider the matrix-vector product with an 𝑁 × 𝑁 matrix. What is the needed
cache size to execute this operation with only compulsory cache misses? Your answer
depends on how the operation is implemented: answer separately for rowwise and
columnwise traversal of the matrix, where you can assume that the matrix is always
stored by rows.
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Chapter 2

Parallel Computing

The largest andmost powerful computers are sometimes called ‘supercomputers’. For the last two decades,
this has, without exception, referred to parallel computers: machines with more than one CPU that can
be set to work on the same problem.

Parallelism is hard to define precisely, since it can appear on several levels. In the previous chapter
you already saw how inside a CPU several instructions can be ‘in flight’ simultaneously. This is called
instruction-level parallelism, and it is outside explicit user control: it derives from the compiler and the
CPU deciding which instructions, out of a single instruction stream, can be processed simultaneously. At
the other extreme is the sort of parallelism where more than one instruction stream is handled by multiple
processors, often each on their own circuit board. This type of parallelism is typically explicitly scheduled
by the user.

In this chapter, we will analyze this more explicit type of parallelism, the hardware that supports it, the
programming that enables it, and the concepts that analyze it.

2.1 Introduction

In scientific codes, there is often a large amount of work to be done, and it is often regular to some extent,
with the same operation being performed on many data. The question is then whether this work can be
sped up by use of a parallel computer. If there are 𝑛 operations to be done, and they would take time 𝑡 on
a single processor, can they be done in time 𝑡/𝑝 on 𝑝 processors?

Let us start with a very simple example. Adding two vectors of length 𝑛
for (i=0; i<n; i++)
a[i] = b[i] + c[i];

can be done with up to 𝑛 processors. In the idealized case with 𝑛 processors, each processor has local
scalars a,b,c and executes the single instruction a=b+c. This is depicted in figure 2.1.

In the general case, where each processor executes something like
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Figure 2.1: Parallelization of a vector addition.

for (i=my_low; i<my_high; i++)
a[i] = b[i] + c[i];

execution time is linearly reduced with the number of processors. If each operation takes a unit time, the
original algorithm takes time 𝑛, and the parallel execution on 𝑝 processors 𝑛/𝑝. The parallel algorithm is
faster by a factor of 𝑝1 .

Next, let us consider summing the elements of a vector. (An operation that has a vector as input but only
a scalar as output is often called a reduction.) We again assume that each processor contains just a single
array element. The sequential code:

s = 0;
for (i=0; i<n; i++)

s += x[i]

is no longer obviously parallel, but if we recode the loop as

for (s=2; s<2*n; s*=2)
for (i=0; i<n-s/2; i+=s)
x[i] += x[i+s/2]

there is a way to parallelize it: every iteration of the outer loop is now a loop that can be done by 𝑛/𝑠
processors in parallel. Since the outer loop will go through log2 𝑛 iterations, we see that the new algorithm
has a reduced runtime of 𝑛/𝑝 ⋅ log2 𝑛. The parallel algorithm is now faster by a factor of 𝑝/ log2 𝑛. This is
depicted in figure 2.2.

Even from these two simple examples we can see some of the characteristics of parallel computing:

• Sometimes algorithms need to be rewritten slightly to make them parallel.
• A parallel algorithm may not show perfect speedup.

1. Here we ignore lower order errors in this result when 𝑝 does not divide perfectly in 𝑛. We will also, in general, ignore
matters of loop overhead.
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Figure 2.2: Parallelization of a vector reduction.

There are other things to remark on. In the first case, if each processors has its 𝑥𝑖, 𝑦𝑖 in a local store the algo-
rithm can be executed without further complications. In the second case, processors need to communicate
data among each other and we haven’t assigned a cost to that yet.

First let us look systematically at communication. We can take the parallel algorithm in the right half
of figure 2.2 and turn it into a tree graph (see Appendix 19) by defining the inputs as leave nodes, all
partial sums as interior nodes, and the root as the total sum. There is an edge from one node to another
if the first is input to the (partial) sum in the other. This is illustrated in figure 2.3. In this figure nodes
are horizontally aligned with other computations that can be performed simultaneously; each level is
sometimes called a superstep in the computation. Nodes are vertically aligned if they are computed on the
same processors, and an arrow corresponds to a communication if it goes from one processor to another.
The vertical alignment in figure 2.3 is not the only one possible. If nodes are shuffled within a superstep

Figure 2.3: Communication structure of a parallel vector reduction.

or horizontal level, a different communication pattern arises.

Exercise 2.1. Consider placing the nodes within a superstep on random processors. Show that,
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if no two nodes wind up on the same processor, at most twice the number of commu-
nications is performed from the case in figure 2.3.

Exercise 2.2. Can you draw the graph of a computation that leaves the sum result on each
processor? There is a solution that takes twice the number of supersteps, and there is
one that takes the same number. In both cases the graph is no longer a tree, but a more
general Directed Acyclic Graph (DAG).

Processors are often connected through a network, andmoving data through this network takes time. This
introduces a concept of distance between the processors. In figure 2.3, where the processors are linearly
ordered, this is related to their rank in the ordering. If the network only connects a processor with its
immediate neighbors, each iteration of the outer loop increases the distance over which communication
takes place.

Exercise 2.3. Assume that an addition takes a certain unit time, and that moving a number
from one processor to another takes that same unit time. Show that the communication
time equals the computation time.
Now assume that sending a number from processor 𝑝 to 𝑝 ± 𝑘 takes time 𝑘. Show that
the execution time of the parallel algorithm now is of the same order as the sequential
time.

The summing example made the unrealistic assumption that every processor initially stored just one vec-
tor element: in practice we will have 𝑝 < 𝑛, and every processor stores a number of vector elements. The
obvious strategy is to give each processor a consecutive stretch of elements, but sometimes the obvious
strategy is not the best.

Exercise 2.4. Consider the case of summing 8 elements with 4 processors. Show that some of
the edges in the graph of figure 2.3 no longer correspond to actual communications.
Now consider summing 16 elements with, again, 4 processors. What is the number of
communication edges this time?

These matters of algorithm adaptation, efficiency, and communication, are crucial to all of parallel com-
puting. We will return to these issues in various guises throughout this chapter.

2.1.1 Functional parallelism versus data parallelism

From the above introduction we can describe parallelism as finding independent operations in the execu-
tion of a program. In all of the examples these independent operations were in fact identical operations,
but applied to different data items. We could call thisdata parallelism: the same operation is applied in
parallel to many data elements. This is in fact a common scenario in scientific computing: parallelism
often stems from the fact that a data set (vector, matrix, graph,…) is spread over many processors, each
working on its part of the data.

The term data parallelism is traditionally mostly applied if the operation is a single instruction; in the case
of a subprogram it is often called task parallelism.

It is also possible to find independence, not based on data elements, but based on the instructions them-
selves. Traditionally, compilers analyze code in terms of ILP: independent instructions can be given to
separate floating point units, or reordered, for instance to optimize register usage (see also section 2.5.2).
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ILP is one case of functional parallelism; on a higher level, functional parallelism can be obtained by con-
sidering independent subprograms, often called task parallelism; see section 2.5.3.

Some examples of functional parallelism are Monte Carlo simulations, and other algorithms that traverse
a parametrized search space, such as boolean satisfyability problems.

2.1.2 Parallelism in the algorithm versus in the code

Often we are in the situation that we want to parallelize an algorithm that has a common expression in
sequential form. In some cases, this sequential form is straightforward to parallelize, such as in the vector
addition discussed above. In other cases there is no simple way to parallelize the algorithm; wewill discuss
linear recurrences in section 6.10.2. And in yet another case the sequential code may look not parallel, but
the algorithm actually has parallelism.

Exercise 2.5.
for i in [1:N]:

x[0,i] = some_function_of(i)
x[i,0] = some_function_of(i)

for i in [1:N]:
for j in [1:N]:

x[i,j] = x[i-1,j]+x[i,j-1]

Answer the following questions about the double i,j loop:
1. Are the iterations of the inner loop independent, that is, could they be executed

simultaneously?
2. Are the iterations of the outer loop independent?
3. If x[1,1] is known, show that x[2,1] and x[1,2] can be computed indepen-

dently.
4. Does this give you an idea for a parallelization strategy?

We will discuss the solution to this conundrum in section 6.10.1. In general, the whole of chapter 6 will
be about the amount of parallelism intrinsic in scientific computing algorithms.

2.2 Theoretical concepts

There are two important reasons for using a parallel computer: to have access to more memory or to
obtain higher performance. It is easy to characterize the gain in memory, as the total memory is the sum
of the individual memories. The speed of a parallel computer is harder to characterize. This section will
have an extended discussion on theoretical measures for expressing and judging the gain in execution
speed from going to a parallel architecture.
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2.2.1 Definitions

2.2.1.1 Speedup and efficiency

A simple approach to defining speedup is to let the same program run on a single processor, and on a
parallel machine with 𝑝 processors, and to compare runtimes. With 𝑇1 the execution time on a single
processor and 𝑇𝑝 the time on 𝑝 processors, we define the speedup as 𝑆𝑝 = 𝑇1/𝑇𝑝 . (Sometimes 𝑇1 is defined
as ‘the best time to solve the problem on a single processor’, which allows for using a different algorithm
on a single processor than in parallel.) In the ideal case, 𝑇𝑝 = 𝑇1/𝑝, but in practice we don’t expect to
attain that, so 𝑆𝑝 ≤ 𝑝. To measure how far we are from the ideal speedup, we introduce the efficiency
𝐸𝑝 = 𝑆𝑝/𝑝. Clearly, 0 < 𝐸𝑝 ≤ 1.
Exercise 2.6. Prove that 𝐸 = 1 implies that all processors are active all the time.

(Hint: suppose all processors finish their work in time 𝑇 , except for one processor in
𝑇 ′ < 𝑇 . What is 𝑇𝑝 in this case? Explore the above relations.)

There is a practical problemwith the above definitions: a problem that can be solved on a parallel machine
may be too large to fit on any single processor. Conversely, distributing a single processor problem over
many processors may give a distorted picture since very little data will wind up on each processor. Below
we will discuss more realistic measures of speed-up.

There are various reasons why the actual speed is less than 𝑝. For one, using more than one processor
necessitates communication and synchronization, which is overhead that was not part of the original
computation. Secondly, if the processors do not have exactly the same amount of work to do, they may
be idle part of the time (this is known as load unbalance), again lowering the actually attained speedup.
Finally, code may have sections that are inherently sequential.

Communication between processors is an important source of a loss of efficiency. Clearly, a problem
that can be solved without communication will be very efficient. Such problems, in effect consisting of a
number of completely independent calculations, is called embarrassingly parallel (or conveniently parallel;
see section 2.5.4); it will have close to a perfect speedup and efficiency.

Exercise 2.7. The case of speedup larger than the number of processors is called superlinear
speedup. Give a theoretical argument why this can never happen.

In practice, superlinear speedup can happen. For instance, suppose a problem is too large to fit in memory,
and a single processor can only solve it by swapping data to disc. If the same problem fits in the memory
of two processors, the speedup may well be larger than 2 since disc swapping no longer occurs. Having
less, or more localized, data may also improve the cache behavior of a code.

A form of superlinear speedup can also happen in search algorithms. Imagine that each processor starts
in a different location of the search space; now it can happen that, say, processor 3 immediately finds
the solution. Sequentially, all the possibilities for processors 1 and 2 would have had to be traversed. The
speedup is much greater than 3 in this case.

2.2.1.2 Cost-optimality

In cases where the speedup is not perfect we can define overhead as the difference

𝑇𝑜 = 𝑝𝑇𝑝 − 𝑇1.
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We can also interpret this as the difference between simulating the parallel algorithm on a single processor,
and the actual best sequential algorithm.

We will later see two different types of overhead:

1. The parallel algorithm can be essentially different from the sequential one. For instance, sorting
algorithms have a complexity 𝑂(𝑛 log 𝑛), but the parallel bitonic sort (section 8.6) has complex-
ity 𝑂(𝑛 log2 𝑛).

2. The parallel algorithm can have overhead derived from the process or parallelizing, such as the
cost of sending messages. As an example, section 6.2.3 analyzes the communication overhead in
the matrix-vector product.

A parallel algorithm is called cost-optimal if the overhead is at most of the order of the running time of
the sequential algorithm.

Exercise 2.8. The definition of overhead above implicitly assumes that overhead is not paral-
lelizable. Discuss this assumption in the context of the two examples above.

2.2.2 Asymptotics

If we ignore limitations such as that the number of processors has to be finite, or the physicalities of
the interconnect between them, we can derive theoretical results on the limits of parallel computing.
This section will give a brief introduction to such results, and discuss their connection to real life high
performance computing.

Consider for instance the matrix-matrix multiplication 𝐶 = 𝐴𝐵, which takes 2𝑁 3 operations where 𝑁 is
the matrix size. Since there are no dependencies between the operations for the elements of 𝐶 , we can
perform them all in parallel. If we had 𝑁 2 processors, we could assign each to an (𝑖, 𝑗) coordinate in 𝐶 ,
and have it compute 𝑐𝑖𝑗 in 2𝑁 time. Thus, this parallel operation has efficiency 1, which is optimal.

Exercise 2.9. Show that this algorithm ignores some serious issues about memory usage:
• If the matrix is kept in shared memory, how many simultaneous reads from each
memory locations are performed?

• If the processors keep the input and output to the local computations in local stor-
age, how much duplication is there of the matrix elements?

Adding 𝑁 numbers {𝑥𝑖}𝑖=1…𝑁 can be performed in log2 𝑁 time with 𝑁/2 processors. If we have 𝑁/2
processors we could compute:

1. Define 𝑠(0)𝑖 = 𝑥𝑖.
2. Iterate with 𝑗 = 1, … , log2 𝑁 :

3. Compute 𝑁/2𝑗 partial sums 𝑠(𝑗)𝑖 = 𝑠(𝑗−1)2𝑖 + 𝑠(𝑗−1)2𝑖+1
We see that the 𝑁/2 processors perform a total of 𝑁 operations (as they should) in log2 𝑁 time. The
efficiency of this parallel scheme is 𝑂(1/ log2 𝑁), a slowly decreasing function of 𝑁 .

Exercise 2.10. Show that, with the scheme for parallel addition just outlined, you can multiply
two matrices in log2 𝑁 time with 𝑁 3/2 processors. What is the resulting efficiency?

It is now a legitimate theoretical question to ask
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• If we had infinitely many processors, what is the lowest possible time complexity for matrix-
matrix multiplication, or

• Are there faster algorithms that still have 𝑂(1) efficiency?
Such questions have been researched (see for instance [98]), but they have little bearing on high perfor-
mance computing.

A first objection to these kinds of theoretical bounds is that they implicitly assume some form of shared
memory. In fact, the formal model for these algorithms is called a Parallel RandomAccess Machine (PRAM),
where the assumption is that every memory location is accessible to any processor.

Often an additional assumption is made that multiple simultaneous accesses to the same location are in
fact possible. Since write and write accesses have a different behavior in practice, there is the concept of
CREW-PRAM, for Concurrent Read, Exclusive Write PRAM.

The basic assumptions of the PRAM model are unrealistic in practice, especially in the context of scaling
up the problem size and the number of processors. A further objection to the PRAM model is that even
on a single processor it ignores the memory hierarchy; section 1.3.

But even if we take distributed memory into account, theoretical results can still be unrealistic. The above
summation algorithm can indeed work unchanged in distributed memory, except that we have to worry
about the distance between active processors increasing as we iterate further. If the processors are con-
nected by a linear array, the number of ‘hops’ between active processors doubles, and with that, asymptot-
ically, the computation time of the iteration. The total execution time then becomes 𝑛/2, a disappointing
result given that we throw so many processors at the problem.

What if the processors are connected with a hypercube topology (section 2.7.5)? It is not hard to see that
the summation algorithm can then indeed work in log2 𝑛 time. However, as 𝑛 → ∞, can we physically
construct a sequence of hypercubes of 𝑛 nodes and keep the communication time between two connected
constant? Since communication time depends on latency, which partly depends on the length of the wires,
we have to worry about the physical distance between nearest neighbors.

The crucial question here is whether the hypercube (an 𝑛-dimensional object) can be embedded in 3-
dimensional space, while keeping the distance (measured in meters) constant between connected neigh-
bors. It is easy to see that a 3-dimensional grid can be scaled up arbitrarily while maintaining a unit wire
length, but the question is not clear for a hypercube. There, the length of the wires may have to increase
as 𝑛 grows, which runs afoul of the finite speed of electrons.

We sketch a proof (see [63] for more details) that, in our three dimensional world and with a finite speed
of light, speedup is limited to 4√𝑛 for a problem on 𝑛 processors, no matter the interconnect. The argument
goes as follows. Consider an operation that involves collecting a final result on one processor. Assume
that each processor takes a unit volume of space, produces one result per unit time, and can send one
data item per unit time. Then, in an amount of time 𝑡 , at most the processors in a ball with radius 𝑡 , that
is, 𝑂(𝑡3) processors total, can contribute to the final result; all others are too far away. In time 𝑇 , then,
the number of operations that can contribute to the final result is ∫𝑇0 𝑡3𝑑𝑡 = 𝑂(𝑇 4). This means that the
maximum achievable speedup is the fourth root of the sequential time.

Finally, the question ‘what if we had infinitely many processors’ is not realistic as such, but we will allow
it in the sense that we will ask theweak scaling question (section 2.2.5) ‘what if we let the problem size and
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the number of processors growproportional to each other’. This question is legitimate, since it corresponds
to the very practical deliberation whether buying more processors will allow one to run larger problems,
and if so, with what ‘bang for the buck’.

2.2.3 Amdahl’s law

One reason for less than perfect speedup is that parts of a code can be inherently sequential. This limits
the parallel efficiency as follows. Suppose that 5% of a code is sequential, then the time for that part can
not be reduced, no matter how many processors are available. Thus, the speedup on that code is limited
to a factor of 20. This phenomenon is known as Amdahl’s Law [4], which we will now formulate.

Figure 2.4: Sequential and parallel time in Amdahl’s analysis.

Let 𝐹𝑠 be the sequential fraction and 𝐹𝑝 be the parallel fraction (or more strictly: the ‘parallelizable’ fraction)
of a code, respectively. Then 𝐹𝑝 + 𝐹𝑠 = 1. The parallel execution time 𝑇𝑝 on 𝑝 processors is the sum of the
part that is sequential 𝑇1𝐹𝑠 and the part that can be parallelized 𝑇1𝐹𝑝/𝑃 :

𝑇𝑃 = 𝑇1(𝐹𝑠 + 𝐹𝑝/𝑃). (2.1)

(see figure 2.4) As the number of processors grows 𝑃 → ∞, the parallel execution time now approaches
that of the sequential fraction of the code: 𝑇𝑃 ↓ 𝑇1𝐹𝑠 . We conclude that speedup is limited by 𝑆𝑃 ≤ 1/𝐹𝑠
and efficiency is a decreasing function 𝐸 ∼ 1/𝑃 .
The sequential fraction of a code can consist of things such as I/O operations. However, there are also
parts of a code that in effect act as sequential. Consider a program that executes a single loop, where
all iterations can be computed independently. Clearly, this code offers no obstacles to parallelization.
However by splitting the loop in a number of parts, one per processor, each processor now has to deal
with loop overhead: calculation of bounds, and the test for completion. This overhead is replicated as
many times as there are processors. In effect, loop overhead acts as a sequential part of the code.
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Exercise 2.11. Let’s do a specific example. Assume that a code has a setup that takes 1 second
and a parallelizable section that takes 1000 seconds on one processor. What are the
speedup and efficiency if the code is executed with 100 processors? What are they for
500 processors? Express your answer to at most two significant digits.

Exercise 2.12. Investigate the implications of Amdahl’s law: if the number of processors 𝑃
increases, how does the parallel fraction of a code have to increase to maintain a fixed
efficiency?

2.2.3.1 Amdahl’s law with communication overhead

In a way, Amdahl’s law, sobering as it is, is even optimistic. Parallelizing a code will give a certain speedup,
but it also introduces communication overhead that will lower the speedup attained. Let us refine ourmodel
of equation (2.1) (see [130, p. 367]):

𝑇𝑝 = 𝑇1(𝐹𝑠 + 𝐹𝑝/𝑃) + 𝑇𝑐 ,
where 𝑇𝑐 is a fixed communication time.

To assess the influence of this communication overhead, we assume that the code is fully parallelizable,
that is, 𝐹𝑝 = 1. We then find that

𝑆𝑝 = 𝑇1
𝑇1/𝑝 + 𝑇𝑐

. (2.2)

For this to be close to 𝑝, we need 𝑇𝑐 ≪ 𝑇1/𝑝 or 𝑝 ≪ 𝑇1/𝑇𝑐 . In other words, the number of processors
should not grow beyond the ratio of scalar execution time and communication overhead.

2.2.3.2 Gustafson’s law

Amdahl’s law was thought to show that large numbers of processors would never pay off. However, the
implicit assumption in Amdahl’s law is that there is a fixed computation which gets executed on more
and more processors. In practice this is not the case: typically there is a way of scaling up a problem (in
chapter 4 you will learn the concept of ‘discretization’), and one tailors the size of the problem to the
number of available processors.

A more realistic assumption would be to say that there is a sequential fraction independent of the problem
size, and a parallel fraction that can be arbitrarily replicated. To formalize this, instead of starting with
the execution time of the sequential program, let us start with the execution time of the parallel program,
and say that

𝑇𝑝 = 𝑇(𝐹𝑠 + 𝐹𝑝) with 𝐹𝑠 + 𝐹𝑝 = 1.
Now we have two possible definitions of 𝑇1. First of all, there is the 𝑇1 you get from setting 𝑝 = 1 in 𝑇𝑝 .
(Convince yourself that that is actually the same as 𝑇𝑝 .) However, what we need is 𝑇1 describing the time
to do all the operations of the parallel program. (See figure 2.5.) Thus, we start out with an observed 𝑇𝑝 ,
and reconstruct 𝑇1 as:

𝑇1 = 𝐹𝑠𝑇𝑝 + 𝑝 ⋅ 𝐹𝑝𝑇𝑝 .
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Figure 2.5: Sequential and parallel time in Gustafson’s analysis.

This gives us a speedup of

𝑆𝑝 = 𝑇1
𝑇𝑝

= 𝐹𝑠 + 𝑝 ⋅ 𝐹𝑝
𝐹𝑠 + 𝐹𝑝

= 𝐹𝑠 + 𝑝 ⋅ 𝐹𝑝 = 𝑝 − (𝑝 − 1) ⋅ 𝐹𝑠 . (2.3)

From this formula we see that:

• Speedup is still bounded by 𝑝;
• … but it’s a positive number;
• for a given 𝑝 it’s again a decreasing function of the sequential fraction.

Exercise 2.13. Rewrite equation (2.3) to express the speedup in terms of 𝑝 and 𝐹𝑝 . What is the
asymptotic behavior of the efficiency 𝐸𝑝?

As with Amdahl’s law, we can investigate the behavior of Gustafson’s law if we include communication
overhead. Let’s go back to equation (2.2) for a perfectly parallelizable problem, and approximate it as

𝑆𝑝 = 𝑝(1 − 𝑇𝑐
𝑇1

𝑝).

Now, under the assumption of a problem that is gradually being scaled up, 𝑇𝑐 and 𝑇1 become functions
of 𝑝. We see that, if 𝑇1(𝑝) ∼ 𝑝𝑇𝑐(𝑝), we get linear speedup that is a constant fraction away from 1. As a
general discussion we can not take this analysis further; in section 6.2.3 you’ll see a detailed analysis of
an example.

2.2.3.3 Amdahl’s law and hybrid programming

Above, you learned about hybrid programming, a mix between distributed and shared memory program-
ming. This leads to a new form of Amdahl’s law.

Suppose we have 𝑝 nodes with 𝑐 cores each, and 𝐹𝑝 describes the fraction of the code that uses 𝑐-way
thread parallelism. We assume that the whole code is fully parallel over the 𝑝 nodes. The ideal speed up
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would be 𝑝𝑐, and the ideal parallel running time 𝑇1/(𝑝𝑐), but the actual running time is

𝑇𝑝,𝑐 = 𝑇1 (
𝐹𝑠
𝑝 + 𝐹𝑝

𝑝𝑐 ) = 𝑇1
𝑝𝑐 (𝐹𝑠𝑐 + 𝐹𝑝) = 𝑇1

𝑝𝑐 (1 + 𝐹𝑠(𝑐 − 1)) .

Exercise 2.14. Show that the speedup 𝑇1/𝑇𝑝,𝑐 can be approximated by 𝑝/𝐹𝑠 .
In the original Amdahl’s law, speedup was limited by the sequential portion to a fixed number 1/𝐹𝑠 , in
hybrid programming it is limited by the task parallel portion to 𝑝/𝐹𝑠 .

2.2.4 Critical path and Brent’s theorem

The above definitions of speedup and efficiency, and the discussion of Amdahl’s law and Gustafson’s
law, made an implicit assumption that parallel work can be arbitrarily subdivided. As you saw in the
summing example in section 2.1, this may not always be the case: there can be dependencies between
operations, meaning that one operation depends on an earlier in the sense of needing its result as input.
Dependent operations can not be executed simultaneously, so they limit the amount of parallelism that
can be employed.

We define the critical path as a (possibly non-unique) chain of dependencies of maximum length. (This
length is sometimes known as span.) Since the tasks on a critical path need to be executed one after
another, the length of the critical path is a lower bound on parallel execution time.

To make these notions precise, we define the following concepts:

Definition 1

𝑇1 ∶ the time the computation takes on a single processor
𝑇𝑝 ∶ the time the computation takes with 𝑝 processors
𝑇∞ ∶ the time the computation takes if unlimited processors are available
𝑃∞∶ the value of 𝑝 for which 𝑇𝑝 = 𝑇∞

With these concepts, we can define the average parallelism of an algorithm as 𝑇1/𝑇∞, and the length of
the critical path is 𝑇∞.

Exercise 2.15. Suppose you have an algorithm that can be executed with 𝐸𝑝 ≡ 1. What does
that mean for the critical path analysis?

We will now give a few illustrations by showing a graph of tasks and their dependencies. We assume for
simplicity that each node is a unit time task.

The maximum number of processors that can be used is 2 and the average par-
allelism is 4/3:

𝑇1 = 4, 𝑇∞ = 3 ⇒ 𝑇1/𝑇∞ = 4/3
𝑇2 = 3, 𝑆2 = 4/3, 𝐸2 = 2/3
𝑃∞ = 2
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The maximum number of processors that can be used is 3 and the average par-
allelism is 9/5; efficiency is maximal for 𝑝 = 2:

𝑇1 = 9, 𝑇∞ = 5 ⇒ 𝑇1/𝑇∞ = 9/5
𝑇2 = 6, 𝑆2 = 3/2, 𝐸2 = 3/4
𝑇3 = 5, 𝑆3 = 9/5, 𝐸3 = 3/5
𝑃∞ = 3

The maximum number of processors that can be used is 4 and
that is also the average parallelism; the figure illustrates a par-
allelization with 𝑃 = 3 that has efficiency ≡ 1:

𝑇1 = 12, 𝑇∞ = 4 ⇒ 𝑇1/𝑇∞ = 3
𝑇2 = 6, 𝑆2 = 2, 𝐸2 = 1
𝑇3 = 4, 𝑆3 = 3, 𝐸3 = 1
𝑇4 = 3, 𝑆4 = 4, 𝐸4 = 1
𝑃∞ = 4

Based on these examples, you probably see that there are two extreme cases:

• If every task depends on precisely on other, you get a chain of dependencies, and 𝑇𝑝 = 𝑇1 for
any 𝑝.

• On the other hand, if all tasks are independent (and 𝑝 divides their number) you get 𝑇𝑝 = 𝑇1/𝑝
for any 𝑝.

• In a slightly less trivial scenario than the previous, consider the case where the critical path is of
length 𝑚, and in each of these 𝑚 steps there are 𝑝 − 1 independent tasks, or at least: dependent
only on tasks in the previous step. There will then be perfect parallelism in each of the 𝑚 steps,
and we can express 𝑇𝑝 = 𝑇1/𝑝 or 𝑇𝑝 = 𝑚 + (𝑇1 − 𝑚)/𝑝.

That last statement actually holds in general. This is known as Brent’s theorem:

Theorem 1 Let 𝑚 be the total number of tasks, 𝑝 the number of processors, and 𝑡 the length of a critical
path. Then the computation can be done in

𝑇𝑝 ≤ 𝑡 + 𝑚 − 𝑡
𝑝 .

Proof. Divide the computation in steps, such that tasks in step 𝑖 + 1 are independent of each other,
and only dependent on step 𝑖. Let 𝑠𝑖 be the number of tasks in step 𝑖, then the time for that step is
⌈ 𝑠𝑖𝑝 ⌉. Summing over 𝑖 gives

𝑇𝑝 =
𝑡

∑
𝑖
⌈ 𝑠𝑖𝑝 ⌉ ≤

𝑡
∑
𝑖

𝑠𝑖 + 𝑝 − 1
𝑝 = 𝑡 +

𝑡
∑
𝑖

𝑠𝑖 − 1
𝑝 = 𝑡 + 𝑚 − 𝑡

𝑝 .
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Exercise 2.16. Consider a tree of depth 𝑑 , that is, with 2𝑑 − 1 nodes, and a search

max
𝑛∈nodes

𝑓 (𝑛).

Assume that all nodes need to be visited: we have no knowledge or any ordering on
their values.
Analyze the parallel running time on 𝑝 processors, where you may assume that 𝑝 = 2𝑞 ,
with 𝑞 < 𝑑 . How does this relate to the numbers you get from Brent’s theorem and
Amdahl’s law?

2.2.5 Scalability

Above, we remarked that splitting a given problem overmore andmore processors does not make sense: at
a certain point there is just not enough work for each processor to operate efficiently. Instead, in practice
users of a parallel code will either choose the number of processors to match the problem size, or they
will solve a series of increasingly larger problems on correspondingly growing numbers of processors. In
both cases it is hard to talk about speedup. Instead, the concept of scalability is used.

We distinguish two types of scalability. So-called strong scalability is in effect the same as speedup as
discussed above. We say that a problem shows strong scalability if, partitioned over more and more pro-
cessors, it shows perfect or near perfect speedup, that is, the execution time goes down linearly with the
number of processors. In terms of efficiency we can describe this as:

𝑁 ≡ constant
𝑃 → ∞ } ⇒ 𝐸𝑃 ≈ constant

Typically, one encounters statements like ‘this problem scales up to 500 processors’, meaning that up to
500 processors the speedup will not noticeably decrease from optimal. It is not necessary for this problem
to fit on a single processor: often a smaller number such as 64 processors is used as the baseline from
which scalability is judged.

Exercise 2.17. We can formulate strong scaling as a runtime that is inversely proportional to
the number of processors:

𝑡 = 𝑐/𝑝.
Show that on a log-log plot, that is, you plot the logarithm of the runtime against the
logarithm of the number of processors, you will get a straight line with slope −1.
Can you suggest a way of dealing with a non-parallelizable section, that is, with a run-
time 𝑡 = 𝑐1 + 𝑐2/𝑝?

More interestingly, weak scalability describes the behavior of execution as problem size and number of
processors both grow, but in such a way that the amount of work per processor stays constant. The term
‘work’ here is ambiguous: sometimes weak scaling is interpreted as keeping the amount of data constant,
in other cases it’s the number of operations that stays constant.

Measures such as speedup are somewhat hard to report, since the relation between the number of opera-
tions and the amount of data can be complicated. If this relation is linear, one could state that the amount
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of data per processor is kept constant, and report that parallel execution time is constant as the number
of processors grows. (Can you think of applications where the relation between work and data is linear?
Where it is not?)

In terms of efficiency:

𝑁 → ∞
𝑃 → ∞
𝑀 = 𝑁/𝑃 ≡ constant

} ⇒ 𝐸𝑃 ≈ constant

Exercise 2.18. Suppose you are investigating the weak scalability of a code. After running it
for a couple of sizes and corresponding numbers of processes, you find that in each case
the flop rate is roughly the same. Argue that the code is indeed weakly scalable.

Exercise 2.19. In the above discussion we always implicitly compared a sequential algorithm
and the parallel form of that same algorithm. However, in section 2.2.1 we noted that
sometimes speedup is defined as a comparison of a parallel algorithm with the best
sequential algorithm for the same problem.With that inmind, compare a parallel sorting
algorithm with runtime (log 𝑛)2 (for instance, bitonic sort; section 8.6) to the best serial
algorithm, which has a running time of 𝑛 log 𝑛.
Show that in the weak scaling case of 𝑛 = 𝑝 speedup is 𝑝/ log 𝑝. Show that in the strong
scaling case speedup is a descending function of 𝑛.

Remark 7 A historical anecdote.

Message: 1023110, 88 lines Posted: 5:34pm EST, Mon Nov
25/85, imported: .... Subject: Challenge from Alan Karp
To: Numerical-Analysis, ... From GOLUB@SU-SCORE.ARPA

I have just returned from the Second SIAM Conference on
Parallel Processing for Scientific Computing in Norfolk,
Virginia. There I heard about 1,000 processor systems,
4,000 processor systems, and even a proposed 1,000,000
processor system. Since I wonder if such systems are the
best way to do general purpose, scientific computing, I am
making the following offer.

I will pay $100 to the first person to demonstrate a speedup
of at least 200 on a general purpose, MIMD computer used for
scientific computing. This offer will be withdrawn at 11:59
PM on 31 December 1995.

This was satisfied by scaling up the problem.
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2.2.5.1 Iso-efficiency

In the definition of weak scalability above, we stated that, under some relation between problem size 𝑁
and number of processors 𝑝, efficiency will stay constant. We can make this precise and define the iso-
efficiency curve as the relation between 𝑁 , 𝑝 that gives constant efficiency [83].

2.2.5.2 Precisely what do you mean by scalable?

In scientific computing scalability is a property of an algorithm and the way it is parallelized on an archi-
tecture, in particular noting the way data is distributed.

In computer industry parlance the term ‘scalability’ is sometimes applied to architectures or whole com-
puter systems:

A scalable computer is a computer designed from a small number of basic compo-
nents, without a single bottleneck component, so that the computer can be incremen-
tally expanded over its designed scaling range, delivering linear incremental perfor-
mance for a well-defined set of scalable applications. General-purpose scalable comput-
ers provide a wide range of processing, memory size, and I/O resources. Scalability is
the degree to which performance increments of a scalable computer are linear” [12].

In particular,

• horizontal scaling is adding more hardware components, such as adding nodes to a cluster;
• vertical scaling corresponds to using more powerful hardware, for instance by doing a hardware
upgrade.

2.2.6 Simulation scaling

In most discussions of weak scaling we assume that the amount of work and the amount of storage
are linearly related. This is not always the case; for instance the operation complexity of a matrix-matrix
product is𝑁 3 for𝑁 2 data. If you linearly increase the number of processors, and keep the data per process
constant, the work may go up with a higher power.

A similar effect comes into play if you simulate time-dependent PDEs. (This uses concepts from chapter 4.)
Here, the total work is a product of the work per time step and the number of time steps. These two
numbers are related; in section 4.1.2 you will see that the time step has a certain minimum size as a
function of the space discretization. Thus, the number of time steps will go up as the work per time step
goes up.

Consider now applications such asweather prediction, and say that currently you need 4 hours of compute
time to predict the next 24 hours of weather. The question is now: if you are happywith these numbers, and
you buy a bigger computer to get a more accurate prediction, what can you say about the new computer?

In other words, rather than investigating scalability from the point of the running of an algorithm, in this
section we will look at the case where the simulated time 𝑆 and the running time 𝑇 are constant. Since
the new computer is presumably faster, we can do more operations in the same amount of running time.
However, it is not clear what will happen to the amount of data involved, and hence the memory required.
To analyze this we have to use some knowledge of the math of the applications.
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Let 𝑚 be the memory per processor, and 𝑃 the number of processors, giving:

𝑀 = 𝑃𝑚 total memory.

If 𝑑 is the number of space dimensions of the problem, typically 2 or 3, we get

Δ𝑥 = 1/𝑀1/𝑑 grid spacing.

For stability this limits the time step Δ𝑡 to

Δ𝑡 = {Δ𝑥 = 1 / 𝑀1/𝑑 hyperbolic case

Δ𝑥2 = 1 / 𝑀2/𝑑 parabolic case

(noting that the hyperbolic case was not discussed in chapter 4.) With a simulated time 𝑆, we find

𝑘 = 𝑆/Δ𝑡 time steps.

If we assume that the individual time steps are perfectly parallelizable, that is, we use explicit methods,
or implicit methods with optimal solvers, we find a running time

𝑇 = 𝑘𝑀/𝑃 = 𝑆
Δ𝑡 𝑚.

Setting 𝑇/𝑆 = 𝐶 , we find

𝑚 = 𝐶Δ𝑡,

that is, the amount of memory per processor goes down as we increase the processor count. (What is the
missing step in that last sentence?)

Further analyzing this result, we find

𝑚 = 𝐶Δ𝑡 = 𝑐 {1 / 𝑀1/𝑑 hyperbolic case

1 / 𝑀2/𝑑 parabolic case

Substituting 𝑀 = 𝑃𝑚, we find ultimately

𝑚 = 𝐶 {1 / 𝑃1/(𝑑+1) hyperbolic

1 / 𝑃2/(𝑑+2) parabolic

that is, the memory per processor that we can use goes down as a higher power of the number of proces-
sors.
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2.2.7 Other scaling measures

Amdahl’s law above was formulated in terms of the execution time on one processor. In many practical
situations this is unrealistic, since the problems executed in parallel would be too large to fit on any single
processor. Some formula manipulation gives us quantities that are to an extent equivalent, but that do not
rely on this single-processor number [150].

For starters, applying the definition 𝑆𝑝(𝑛) = 𝑇1(𝑛)
𝑇𝑝(𝑛) to strong scaling, we observe that 𝑇1(𝑛)/𝑛 is the sequen-

tial time per operation, and its inverse 𝑛/𝑇1(𝑛) can be called the sequential computational rate, denoted
𝑅1(𝑛). Similarly defining a ‘parallel computational rate’

𝑅𝑝(𝑛) = 𝑛/𝑇𝑝(𝑛)

we find that

𝑆𝑝(𝑛) = 𝑅𝑝(𝑛)/𝑅1(𝑛)

In strong scaling 𝑅1(𝑛) will be a constant, so we make a logarithmic plot of speedup, purely based on
measuring 𝑇𝑝(𝑛).

2.2.8 Concurrency; asynchronous and distributed computing

Even on computers that are not parallel there is a question of the execution of multiple simultaneous
processes. Operating systems typically have a concept of time slicing, where all active process are given
command of the CPU for a small slice of time in rotation. In this way, a sequential can emulate a parallel
machine; of course, without the efficiency.

However, time slicing is useful even when not running a parallel application: OSs will have independent
processes (your editor, something monitoring your incoming mail, et cetera) that all need to stay active
and run more or less often. The difficulty with such independent processes arises from the fact that they
sometimes need access to the same resources. The situation where two processes both need the same two
resources, each getting hold of one, is called deadlock. A famous formalization of resource contention is
known as the dining philosophers problem.

The field that studies such as independent processes is variously known as concurrency, asynchronous
computing, or distributed computing. The term concurrency describes that we are dealing with tasks that
are simultaneously active, with no temporal ordering between their actions. The term distributed com-
puting derives from such applications as database systems, where multiple independent clients need to
access a shared database.

We will not discuss this topic much in this book. Section 2.6.1 discusses the thread mechanism that sup-
ports time slicing; on modern multicore processors threads can be used to implement shared memory
parallel computing.

The book ‘Communicating Sequential Processes’ offers an analysis of the interaction between concurrent
processes [106]. Other authors use topology to analyze asynchronous computing [101].
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Figure 2.6: The four classes of the Flynn’s taxonomy.

2.3 Parallel Computers Architectures

For quite a while now, the top computers have been some sort of parallel computer, that is, an architec-
ture that allows the simultaneous execution of multiple instructions or instruction sequences. One way of
characterizing the various forms this can take is due to Flynn [64]. Flynn’s taxonomy characterizes archi-
tectures by whether the data flow and control flow are shared or independent. The following four types
result (see also figure 2.6):

SISD Single Instruction Single Data: this is the traditional CPU architecture: at any one time only a single
instruction is executed, operating on a single data item.

SIMD Single Instruction Multiple Data: in this computer type there can be multiple processors, each
operating on its own data item, but they are all executing the same instruction on that data item.
Vector computers (section 2.3.1.1) are typically also characterized as SIMD.

MISD Multiple Instruction Single Data. No architectures answering to this description exist; one could
argue that redundant computations for safety-critical applications are an example of MISD.

MIMD Multiple Instruction Multiple Data: here multiple CPUs operate on multiple data items, each ex-
ecuting independent instructions. Most current parallel computers are of this type.

We will now discuss SIMD and MIMD architectures in more detail.

2.3.1 SIMD

Figure 2.7: Architecture of the
MasPar 2 array processor.

Parallel computers of the SIMD type apply the same operation simul-
taneously to a number of data items. The design of the CPUs of such
a computer can be quite simple, since the arithmetic unit does not
need separate logic and instruction decoding units: all CPUs execute
the same operation in lock step. This makes SIMD computers excel at
operations on arrays, such as

for (i=0; i<N; i++) a[i] = b[i]+c[i];
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and, for this reason, they are also often called array processors. Scien-
tific codes can often be written so that a large fraction of the time is
spent in array operations.

On the other hand, there are operations that can not can be executed
efficiently on an array processor. For instance, evaluating a number of
terms of a recurrence 𝑥𝑖+1 = 𝑎𝑥𝑖 + 𝑏𝑖 involves that many additions and
multiplications, but they alternate, so only one operation of each type
can be processed at any one time. There are no arrays of numbers here
that are simultaneously the input of an addition or multiplication.

In order to allow for different instruction streams on different parts of
the data, the processor would have a ‘mask bit’ that could be set to
prevent execution of instructions. In code, this typically looks like

where (x>0) {
x[i] = sqrt(x[i])

The programming model where identical operations are applied to a
number of data items simultaneously, is known as data parallelism.

Such array operations can occur in the context of physics simulations,
but another important source is graphics applications. For this applica-
tion, the processors in an array processor can be muchweaker than the
processor in a PC: often they are in fact bit processors, capable of oper-
ating on only a single bit at a time. Along these lines, ICL had the 4096
processor DAP [112] in the 1980s, and Goodyear built a 16K processor
MPP [10] in the 1970s.

Later, the Connection Machine (CM-1, CM-2, CM-5) were quite popular. While the first Connection Ma-
chine had bit processors (16 to a chip), the later models had traditional processors capable of floating
point arithmetic, and were not true SIMD architectures. All were based on a hyper-cube interconnection
network; see section 2.7.5. Another manufacturer that had a commercially successful array processor was
MasPar ; figure 2.7 illustrates the architecture. You clearly see the single control unit for a square array of
processors, plus a network for doing global operations.

Supercomputers based on array processing do not exist anymore, but the notion of SIMD lives on in var-
ious guises. For instance, GPUs are SIMD-based, enforced through their CUDA programming language.
Also, the Intel Xeon Phi has a strong SIMD component. While early SIMD architectures were motivated
by minimizing the number of transistors necessary, these modern co-processors are motivated by power
efficiency considerations. Processing instructions (known as instruction issue) is actually expensive com-
pared to a floating point operation, in time, energy, and chip real estate needed. Using SIMD is then a way
to economize on the last two measures.

2.3.1.1 Pipelining and pipeline processors

A number of computers have been based on a vector processor or pipeline processor design. The first com-
mercially successful supercomputers, the Cray-1 and the Cyber-205 were of this type. In recent times, the
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Cray-X1 and the NEC SX series have featured vector pipes. The ‘Earth Simulator’ computer [168], which
led the TOP500 (section 2.11.4) for 3 years, was based on NEC SX processors. The general idea behind
pipelining was described in section 1.2.1.3.

While supercomputers based on pipeline processors are in a distinct minority, pipelining is now main-
stream in the superscalar CPUs that are the basis for clusters. A typical CPU has pipelined floating point
units, often with separate units for addition and multiplication; see section 1.2.1.3.

However, there are some important differences between pipelining in a modern superscalar CPU and in,
more old-fashioned, vector units. The pipeline units in these vector computers are not integrated floating
point units in the CPU, but can better be considered as attached vector units to a CPU that itself has a
floating point unit. The vector unit has vector registers2 with a typical length of 64 floating point numbers;
there is typically no ‘vector cache’. The logic in vector units is also simpler, often addressable by explicit
vector instructions. Superscalar CPUs, on the other hand, are fully integrated in the CPU and geared
towards exploiting data streams in unstructured code.

2.3.1.2 True SIMD in CPUs and GPUs

True SIMD array processing can be found in modern CPUs and GPUs, in both cases inspired by the
parallelism that is needed in graphics applications.

Modern CPUs from Intel and AMD, as well as PowerPC chips, have vector instructions that can perform
multiple instances of an operation simultaneously. On Intel processors this is known as SIMD Stream-
ing Extensions (SSE) or Advanced Vector Extensions (AVX). These extensions were originally intended for
graphics processing, where often the same operation needs to be performed on a large number of pixels.
Often, the data has to be a total of, say, 128 bits, and this can be divided into two 64-bit reals, four 32-bit
reals, or a larger number of even smaller chunks such as 4 bits.

The AVX instructions are based on up to 512-bit wide SIMD, that is, eight double precision floating point
numbers can be processed simultaneously. Just as single floating point operations operate on data in reg-
isters (section 1.3.3), vector operations use vector registers. The locations in a vector register are sometimes
referred to as SIMD lanes.

The use of SIMD is mostly motivated by power considerations. Decoding instructions can be more power
consuming than executing them, so SIMD parallelism is a way to save power.

Current compilers can generate SSE or AVX instructions automatically; sometimes it is also possible for
the user to insert pragmas, for instance with the Intel compiler:

void func(float *restrict c, float *restrict a,
float *restrict b, int n)

{
#pragma vector always
for (int i=0; i<n; i++)

c[i] = a[i] * b[i];
}

2. The Cyber205 was an exception, with direct-to-memory architecture.
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Use of these extensions often requires data to be aligned with cache line boundaries (section 1.4.0.7), so
there are special allocate and free calls that return aligned memory.

Version 4 of OpenMP also has directives for indicating SIMD parallelism.

Array processing on a larger scale can be found in GPUs. A GPU contains a large number of simple
processors, ordered in groups of 32, typically. Each processor group is limited to executing the same
instruction. Thus, this is true example of SIMD processing. For further discussion, see section 2.9.3.

2.3.2 MIMD / SPMD computers

By far the most common parallel computer architecture these days is called Multiple Instruction Multiple
Data (MIMD): the processors execute multiple, possibly differing instructions, each on their own data.
Saying that the instructions differ does not mean that the processors actually run different programs: most
of these machines operate in Single Program Multiple Data (SPMD) mode, where the programmer starts
up the same executable on the parallel processors. Since the different instances of the executable can take
differing paths through conditional statements, or execute differing numbers of iterations of loops, they
will in general not be completely in sync as they were on SIMD machines. If this lack of synchronization
is due to processors working on different amounts of data, it is called load unbalance, and it is a major
source of less than perfect speedup; see section 2.10.

There is a great variety in MIMD computers. Some of the aspects concern the way memory is organized,
and the network that connects the processors. Apart from these hardware aspects, there are also differing
ways of programming these machines. We will see all these aspects below. Many machines these days are
called clusters. They can be built out of custom or commodity processors (if they consist of PCs, running
Linux, and connected with Ethernet, they are referred to as Beowulf clusters [90]); since the processors are
independent they are examples of the MIMD or SPMD model.

2.3.3 The commoditization of supercomputers

In the 1980s and 1990s supercomputers were radically different from personal computer andmini or super-
mini computers such as the DEC PDP and VAX series. The SIMD vector computers had one (CDCCyber205
or Cray-1), or at most a few (ETA-10, Cray-2, Cray X/MP , Cray Y/MP), extremely powerful processors,
often a vector processor. Around the mid-1990s clusters with thousands of simpler (micro) processors
started taking over from the machines with relative small numbers of vector pipes (see http://www.
top500.org/lists/1994/11). At first these microprocessors (IBM Power series, Intel i860, MIPS, DEC
Alpha) were still much more powerful than ‘home computer’ processors, but later this distinction also
faded to an extent. Currently, many of the most powerful clusters are powered by essentially the same
Intel Xeon and AMD Opteron chips that are available on the consumer market. Others use IBM Power
Series or other ‘server’ chips. See section 2.11.4 for illustrations of this history since 1993.

2.4 Different types of memory access
In the introduction we defined a parallel computer as a setup where multiple processors work together
on the same problem. In all but the simplest cases this means that these processors need access to a joint
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Figure 2.8: References to identically named variables in the distributed and shared memory case.

pool of data. In the previous chapter you saw how, even on a single processor, memory can have a hard
time keeping up with processor demands. For parallel machines, where potentially several processors
want to access the same memory location, this problem becomes even worse. We can characterize parallel
machines by the approach they take to the problem of reconcilingmultiple accesses, bymultiple processes,
to a joint pool of data.

The main distinction here is between distributed memory and shared memory. With distributed memory,
each processor has its own physical memory, and more importantly its own address space. Thus, if two
processors refer to a variable x, they access a variable in their own local memory. This is an instance of
the SPMD model.

On the other hand, with shared memory, all processors access the same memory; we also say that they
have a shared address space. See figure 2.8.

2.4.1 Symmetric Multi-Processors: Uniform Memory Access

Parallel programming is fairly simple if any processor can access any memory location. For this reason,
there is a strong incentive for manufacturers to make architectures where processors see no difference
between one memory location and another: any memory location is accessible to every processor, and
the access times do not differ. This is called Uniform Memory Access (UMA), and the programming model
for architectures on this principle is often called Symmetric Multi Processing (SMP).

There are a fewways to realize an SMP architecture. Current desktop computers can have a few processors
accessing a shared memory through a single memory bus; for instance Apple markets a model with 2 six-
core processors. Having a memory bus that is shared between processors works only for small numbers
of processors; for larger numbers one can use a crossbar that connects multiple processors to multiple
memory banks; see section 2.7.6.

On multicore processors there is uniform memory access of a different type: the cores typically have a
shared cache, typically the L3 or L2 cache.
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Figure 2.9: Non-uniform memory access in a four-socket motherboard.

2.4.2 Non-Uniform Memory Access

The UMA approach based on shared memory is obviously limited to a small number of processors. The
crossbar networks are expandable, so they would seem the best choice. However, in practice one puts
processors with a local memory in a configuration with an exchange network. This leads to a situation
where a processor can access its own memory fast, and other processors’ memory slower. This is one case
of so-called NUMA: a strategy that uses physically distributed memory, abandoning the uniform access
time, but maintaining the logically shared address space: each processor can still access any memory
location.

2.4.2.1 Affinity

When we have NUMA, the question of where to place data, in relation to the process or thread that will
access it, becomes important. This is known as affinity; if we look at it from the point of view of placing
the processes or threads, it is called process affinity.

Figure 2.9 illustrates NUMA in the case of the four-socket motherboard of the TACC Ranger cluster . Each
chip has its own memory (8Gb) but the motherboard acts as if the processors have access to a shared pool
of 32Gb. Obviously, accessing the memory of another processor is slower than accessing local memory. In
addition, note that each processor has three connections that could be used to access other memory, but
the rightmost two chips use one connection to connect to the network. This means that accessing each
other’s memory can only happen through an intermediate processor, slowing down the transfer, and tying
up that processor’s connections.

2.4.2.2 Coherence

While the NUMA approach is convenient for the programmer, it offers some challenges for the system.
Imagine that two different processors each have a copy of amemory location in their local (cache)memory.
If one processor alters the content of this location, this change has to be propagated to the other processors.
If both processors try to alter the content of the one memory location, the behavior of the program can
become undetermined.
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Keeping copies of a memory location synchronized is known as cache coherence (see section 1.5.1 for fur-
ther details); a multi-processor system using it is sometimes called a ‘cache-coherent NUMA’ or ccNUMA
architecture.

Taking NUMA to its extreme, it is possible to have a software layer that makes network-connected proces-
sors appear to operate on shared memory. This is known as distributed shared memory or virtual shared
memory. In this approach a hypervisor offers a shared memory API, by translating system calls to dis-
tributed memory management. This shared memory API can be utilized by the Linux kernel, which can
support 4096 threads.

Among current vendors only SGI (the UV line) and Cray (the XE6) market products with large scale
NUMA. Both offer strong support for Partitioned Global Address Space (PGAS) languages; see section 2.6.5.
There are vendors, such as ScaleMP , that offer a software solution to distributed sharedmemory on regular
clusters.

2.4.3 Logically and physically distributed memory

The most extreme solution to the memory access problem is to offer memory that is not just physically,
but that is also logically distributed: the processors have their own address space, and can not directly
see another processor’s memory. This approach is often called ‘distributed memory’, but this term is
unfortunate, since we really have to consider the questions separately whether memory is distributed and
whether is appears distributed. Note that NUMA also has physically distributed memory; the distributed
nature of it is just not apparent to the programmer.

With logically and physically distributed memory, the only way one processor can exchange information
with another is through passing information explicitly through the network. You will see more about this
in section 2.6.3.3.

This type of architecture has the significant advantage that it can scale up to large numbers of processors:
the IBM BlueGene has been built with over 200,000 processors. On the other hand, this is also the hardest
kind of parallel system to program.

Various kinds of hybrids between the above types exist. In fact, most modern clusters will have NUMA
nodes, but a distributed memory network between nodes.

2.5 Granularity of parallelism

In this section we look at parallelism from a point of how far to subdivide the work over processing ele-
ments. The concept we explore here is that of granularity: the balance between the amount of independent
work per processing element, and how often processing elements need to synchronize. We talk of ‘large
grain parallelism’ if there is a lot of work in between synchronization points, and ‘small grain parallelism’
if that amount of work is small. Obviously, in order for small grain parallelism to be profitable, the syn-
chronization needs to be fast; with large grain parallelism we can tolerate most costly synchronization.

The discussion in this section will be mostly on a conceptual level; in section 2.6 we will go into some
detail on actual parallel programming.
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2.5.1 Data parallelism

It is fairly common for a program to have loops with a simple body that gets executed for all elements in
a large data set:

for (i=0; i<1000000; i++)
a[i] = 2*b[i];

Such code is considered an instance of data parallelism or fine-grained parallelism. If you had as many
processors as array elements, this code would look very simple: each processor would execute the state-
ment

a = 2*b

on its local data.

If your code consists predominantly of such loops over arrays, it can be executed efficiently with all
processors in lockstep. Architectures based on this idea, where the processors can in fact only work in
lockstep, have existed, see section 2.3.1. Such fully parallel operations on arrays appear in computer graph-
ics, where every pixel of an image is processed independently. For this reason, GPUs (section 2.9.3) are
strongly based on data parallelism.

The Compute-Unified Device Architecture (CUDA) language, invented by NVidia, allows for elegant ex-
pression of data parallelism. Later developed languages, such as Sycl, or libraries such as Kokkos, aim at
similar expression, but are more geared towards heterogeneous parallelism.

Continuing the above example for a little bit, consider the operation

for 0 ≤ 𝑖 < max do
𝑖left = mod (𝑖 − 1,max)
𝑖right = mod (𝑖 + 1,max)
𝑎𝑖 = (𝑏𝑖left + 𝑏𝑖right)/2

On a data parallel machine, that could be implemented as

bleft ← shiftright(b)
bright ← shiftleft(b)
a ← (bleft + bright)/2

where the shiftleft/right instructions cause a data item to be sent to the processor with a number
lower or higher by 1. For this second example to be efficient, it is necessary that each processor can
communicate quickly with its immediate neighbors, and the first and last processor with each other.

In various contexts such a ‘blur’ operations in graphics, it makes sense to have operations on 2D data:

for 0 < 𝑖 < 𝑚 do
for 0 < 𝑗 < 𝑛 do

𝑎𝑖𝑗 ← (𝑏𝑖𝑗−1 + 𝑏𝑖𝑗+1 + 𝑏𝑖−1𝑗 + 𝑏𝑖+1𝑗)
and consequently processors have be able to move data to neighbors in a 2D grid.
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2.5.2 Instruction-level parallelism

In ILP, the parallelism is still on the level of individual instructions, but these need not be similar. For
instance, in

𝑎 ← 𝑏 + 𝑐
𝑑 ← 𝑒 ∗ 𝑓

the two assignments are independent, and can therefore be executed simultaneously. This kind of paral-
lelism is too cumbersome for humans to identify, but compilers are very good at this. In fact, identifying
ILP is crucial for getting good performance out of modern superscalar CPUs.

2.5.3 Task-level parallelism

At the other extreme from data and instruction-level parallelism, task parallelism is about identifying
whole subprograms that can be executed in parallel. As an example, a search in a tree data structure could
be implemented as follows:

if optimal (root) then
exit

else
parallel: SearchInTree (leftchild),SearchInTree (rightchild)

Procedure SearchInTree(root)

The search tasks in this example are not synchronized, and the number of tasks is not fixed: it can grow
arbitrarily. In practice, having too many tasks is not a good idea, since processors are most efficient if they
work on just a single task. Tasks can then be scheduled as follows:

while there are tasks left do
wait until a processor becomes inactive;
spawn a new task on it

(There is a subtle distinction between the two previous pseudo-codes. In the first, taskswere self-scheduling:
each task spawned off two new ones. The second code is an example of the manager-worker paradigm:
there is one central task which lives for the duration of the code, andwhich spawns and assigns the worker
tasks.)

Unlike in the data parallel example above, the assignment of data to processor is not determined in advance
in such a scheme. Therefore, this mode of parallelism is most suited for thread-programming, for instance
through the OpenMP library; section 2.6.2.

Let us consider a more serious example of task-level parallelism.

A finite element mesh is, in the simplest case, a collection of triangles that covers a 2D object. Since angles
that are too acute should be avoided, the Delauney mesh refinement process can take certain triangles, and
replace them by better shaped ones. This is illustrated in figure 2.10: the black triangles violate some
angle condition, so either they themselves get subdivided, or they are joined with some neighboring ones
(rendered in grey) and then jointly redivided.
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Figure 2.10: A mesh before and after refinement.

Mesh m = /* read in initial mesh */
WorkList wl;
wl.add(mesh.badTriangles());
while (wl.size() != 0) do

Element e = wl.get(); //get bad triangle
if (e no longer in mesh) continue;
Cavity c = new Cavity(e);
c.expand();
c.retriangulate();
mesh.update(c);
wl.add(c.badTriangles());

Figure 2.11: Task queue implementation of Delauney refinement.

In pseudo-code, this can be implemented as in figure 2.11. (This figure and code are to be found in [124],
which also contains a more detailed discussion.)

It is clear that this algorithm is driven by a worklist (or task queue) data structure that has to be shared
between all processes. Together with the dynamic assignment of data to processes, this implies that this
type of irregular parallelism is suited to shared memory programming, and is much harder to do with
distributed memory.

2.5.4 Conveniently parallel computing

In certain contexts, a simple, often single processor, calculation needs to be performed on many differ-
ent inputs. Since the computations have no data dependencies and need not be done in any particular
sequence, this is often called embarrassingly parallel or conveniently parallel computing. This sort of par-
allelism can happen at several levels. In examples such as calculation of the Mandelbrot set or evaluating
moves in a chess game, a subroutine-level computation is invoked for many parameter values. On a coarser
level it can be the case that a simple program needs to be run for many inputs. In this case, the overall
calculation is referred to as a parameter sweep.
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2.5.5 Medium-grain data parallelism

The above strict realization of data parallelism assumes that there are asmany processors as data elements.
In practice, processors will have much more memory than that, and the number of data elements is likely
to be far larger than the processor count of even the largest computers. Therefore, arrays are grouped
onto processors in subarrays. The code then looks like this:

my_lower_bound = // some processor-dependent number
my_upper_bound = // some processor-dependent number
for (i=my_lower_bound; i<my_upper_bound; i++)
// the loop body goes here

This model has some characteristics of data parallelism, since the operation performed is identical on a
large number of data items. It can also be viewed as task parallelism, since each processor executes a
larger section of code, and does not necessarily operate on equal sized chunks of data.

2.5.6 Task granularity

In the previous subsections we considered different level of finding parallel work, or different ways of
dividing upwork so as to find parallelism. There is anotherway of looking at this: we define the granularity
of a parallel scheme as the amount of work (or the task size) that a processing element can perform before
having to communicate or synchronize with other processing elements.

In ILP we are dealing with very fine-grained parallelism, on the order of a single instruction or just a few
instructions. In true task parallelism the granularity is much coarser.

The interesting case here is data parallelism, where we have the freedom to choose the task sizes. On
SIMD machines we can choose a granularity of a single instruction, but, as you saw in section 2.5.5,
operations can be grouped intomedium-sized tasks. Thus, operations that are data parallel can be executed
on distributed memory clusters, given the right balance between the number of processors and total
problem size.

Exercise 2.20. Discuss choosing the right granularity for a data parallel operation such as av-
eraging on a two-dimensional grid. Show that there is a surface-to-volume effect: the
amount of communication is of a lower order than the computation. This means that,
even if communication is much slower than computation, increasing the task size will
still give a balanced execution.

Unfortunately, choosing a large task size to overcome slow communication may aggravate another prob-
lem: aggregating these operations may give tasks with varying running time, causing load imbalance. One
solution here is to use an overdecomposition of the problem: create more tasks then there are processing
elements, and assign multiple tasks to a processor (or assign tasks dynamically) to even out irregular run-
ning times. This is known as dynamic scheduling, and the examples in section 2.5.3 illustrate this; see also
section 2.6.2.1. An example of overdecomposition in linear algebra is discussed in section 6.3.2.
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2.6 Parallel programming

Parallel programming is more complicated than sequential programming. While for sequential program-
ming most programming languages operate on similar principles (some exceptions such as functional or
logic languages aside), there is a variety of ways of tackling parallelism. Let’s explore some of the concepts
and practical aspects.

There are various approaches to parallel programming. First of all, there does not seem to be any hope of
a parallelizing compiler that can automagically transform a sequential program into a parallel one. Apart
from the problem of figuring out which operations are independent, the main problem is that the problem
of locating data in a parallel context is very hard. A compiler would need to consider the whole code,
rather than a subroutine at a time. Even then, results have been disappointing.

More productive is the approach where the user writes mostly a sequential program, but gives some
indications about what computations can be parallelized, and how data should be distributed. Indicating
parallelism of operations explicitly is done in OpenMP (section 2.6.2); indicating the data distribution
and leaving parallelism to the compiler and runtime is the basis for PGAS languages (section 2.6.5). Such
approaches work best with shared memory.

By far the hardest way to program in parallel, but with the best results in practice, is to expose the par-
allelism to the programmer and let the programmer manage everything explicitly. This approach is nec-
essary in the case of distributed memory programming. We will have a general discussion of distributed
programming in section 2.6.3.1; section 2.6.3.3 will discuss the MPI library.

2.6.1 Thread parallelism

As a preliminary to OpenMP (section 2.6.2), we will briefly go into ‘threads’.

To explain what a thread is, we first need to get technical about what a process is. A unix process corre-
sponds to the execution of a single program. Thus, it has in memory:

• The program code, in the form of machine language instructions;
• A heap, containing for instance arrays that were created with malloc;
• A stack with quick-changing information, such as the program counter that indicates what in-
struction is currently being executed, and data items with local scope, as well as intermediate
results from computations.

This process can have multiple threads; these are similar in that they see the same program code and heap,
but they have their own stack. Thus, a thread is an independent ‘strand’ of execution through a process.

Processes can belong to different users, or be different programs that a single user is running concurrently,
so they have their own data space. On the other hand, threads are part of one process and therefore share
the process heap. Threads can have some private data, for instance by have their own data stack, but their
main characteristic is that they can collaborate on the same data.

2.6.1.1 The fork-join mechanism

Threads are dynamic, in the sense that they can be created during program execution. (This is different
from the MPI model, where every processor run one process, and they are all created and destroyed at the
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same time.) When a program starts, there is one thread active: the main thread. Other threads are created
by thread spawning, and the main thread can wait for their completion. This is known as the fork-join

Figure 2.12: Thread creation and deletion during parallel execution.

model; it is illustrated in figure 2.12. A group of threads that is forked from the same thread and active
simultaneously is known as a thread team.

2.6.1.2 Hardware support for threads

Threads as they were described above are a software construct. Threading was possible before parallel
computers existed; they were for instance used to handle independent activities in an OS. In the ab-
sence of parallel hardware, the OS would handle the threads through multitasking or time slicing: each
thread would regularly get to use the CPU for a fraction of a second. (Technically, the Linux kernel treads
processes and threads though the task concept; tasks are kept in a list, and are regularly activated or
de-activated.)

This can lead to higher processor utilization, since the instructions of one thread can be processed while
another thread is waiting for data. (On traditional CPUs, switching between threads is somewhat expen-
sive (an exception is the hyperthreading mechanism) but on GPUs it is not, and in fact they need many
threads to attain high performance.)

On modern multicore processors there is an obvious way of supporting threads: having one thread per
core gives a parallel execution that uses your hardware efficiently. The shared memory allows the threads
to all see the same data. This can also lead to problems; see section 2.6.1.5.

2.6.1.3 Threads example

The following example, which is strictly Unix-centric and will not work on Windows, is a clear illus-
tration of the fork-join model. It uses the pthreads library to spawn a number of tasks that all update a
global counter. Since threads share the same memory space, they indeed see and update the same memory
location.

#include <stdlib.h>
#include <stdio.h>
#include "pthread.h"

int sum=0;

void adder() {
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sum = sum+1;
return;

}

#define NTHREADS 50
int main() {

int i;
pthread_t threads[NTHREADS];
printf("forking\n");
for (i=0; i<NTHREADS; i++)
if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1;

printf("joining\n");
for (i=0; i<NTHREADS; i++)
if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;

printf("Sum computed: %d\n",sum);

return 0;
}

The fact that this code gives the right result is a coincidence: it only happens because updating the variable
is so much quicker than creating the thread. (On a multicore processor the chance of errors will greatly
increase.) If we artificially increase the time for the update, we will no longer get the right result:

void adder() {
int t = sum; sleep(1); sum = t+1;
return;

}

Now all threads read out the value of sum, wait a while (presumably calculating something) and then
update.

This can be fixed by having a lock on the code region that should be ‘mutually exclusive’:

pthread_mutex_t lock;

void adder() {
int t;
pthread_mutex_lock(&lock);
t = sum; sleep(1); sum = t+1;
pthread_mutex_unlock(&lock);
return;

}

int main() {
....
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pthread_mutex_init(&lock,NULL);

The lock and unlock commands guarantee that no two threads can interfere with each other’s update.

2.6.1.4 Contexts

In the above example and its version with the sleep command we glanced over the fact that there were
two types of data involved. First of all, the variable swas created outside the thread spawning part. Thus,
this variable was shared.

On the other hand, the variable t was created once in each spawned thread. We call this private data.

The totality of all data that a thread can access is called its context. It contains private and shared data,
as well as temporary results of computations that the thread is working on. (It also contains the program
counter and stack pointer. If you don’t know what those are, don’t worry.)

It is quite possible to create more threads than a processor has cores, so a processor may need to switch
between the execution of different threads. This is known as a context switch.

Context switches are not for free on regular CPUs, so they only pay off if the granularity of the threaded
work is high enough. The exceptions to this story are:

• CPUs that have hardware support for multiple threads, for instance through hyperthreading (sec-
tion 2.6.1.9), or as in the Intel Xeon Phi (section 2.9);

• GPUs, which in fact rely on fast context switching (section 2.9.3);
• certain other ‘exotic’ architectures such as the Cray XMT (section 2.8).

2.6.1.5 Race conditions, thread safety, and atomic operations

Shared memory makes life easy for the programmer, since every processor has access to all of the data:
no explicit data traffic between the processor is needed. On the other hand, multiple processes/processors
can also write to the same variable, which is a source of potential problems.

Suppose that two processes both try to increment an integer variable I:
Init: I=0
process 1: I=I+2
process 2: I=I+3
This is a legitimate activity if the variable is an accumulator for values computed by independent pro-
cesses. The result of these two updates depends on the sequence in which the processors read and write
the variable.

Figure 2.13 illustrates three scenarios. Such a scenario, where the final result depends on which thread
executes first, is known as a race condition or data race. A formal definition would be:

We talk of a a data race if there are two statements 𝑆1, 𝑆2,
• that are not causally related;
• that both access a location 𝐿; and
• at least one access is a write.
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scenario 1. scenario 2. scenario 3.

I = 0
read I = 0 read I = 0 read I = 0 read I = 0 read I = 0
set I = 2 set I = 3 set I = 2 set I = 3 set I = 2

write I = 2 write I = 3 write I = 2
write I = 3 write I = 2 read I = 2

set I = 5
write I = 5

I = 3 I = 2 I = 5

Figure 2.13: Three executions of a data race scenario.

A very practical example of such conflicting updates is the inner product calculation:

for (i=0; i<1000; i++)
sum = sum+a[i]*b[i];

Here the products are truly independent, so we could choose to have the loop iterations do them in
parallel, for instance by their own threads. However, all threads need to update the same variable sum.
This particular case of a data conflict is called reduction, and it is common enough that many threading
systems have a dedicated mechanism for it.

Code that behaves the same whether it’s executed sequentially or threaded is called thread-safe. As you
can see from the above examples, a lack of thread safety is typically due to the treatment of shared data.
This implies that the more your program uses local data, the higher the chance that it is thread safe.
Unfortunately, sometimes the threads need to write to shared/global data.

There are essentially two ways of solving this problem. One is that we declare such updates of a shared
variable a critical section of code. This means that the instructions in the critical section (in the inner
product example ‘read sum from memory, update it, write back to memory’) can be executed by only one
thread at a time. In particular, they need to be executed entirely by one thread before any other thread
can start them so the ambiguity problem above will not arise. Of course, the above code fragment is so
common that systems like OpenMP (section 2.6.2) have a dedicated mechanism for it, by declaring it a
reduction operation.

Critical sections can for instance be implemented through the semaphore mechanism [48]. Surrounding
each critical section there will be two atomic operations controlling a semaphore, a sign post. The first
process to encounter the semaphore will lower it, and start executing the critical section. Other processes
see the lowered semaphore, and wait. When the first process finishes the critical section, it executes the
second instruction which raises the semaphore, allowing one of the waiting processes to enter the critical
section.

The other way to resolve common access to shared data is to set a temporary lock on certain memory
areas. This solution may be preferable, if common execution of the critical section is likely, for instance if
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it implements writing to a database or hash table. In this case, one process entering a critical section would
prevent any other process from writing to the data, even if they might be writing to different locations;
locking the specific data item being accessed is then a better solution.

The problem with locks is that they typically exist on the operating system level. This means that they
are relatively slow. Since we hope that iterations of the inner product loop above would be executed at
the speed of the floating point unit, or at least that of the memory bus, this is unacceptable.

One implementation of this is transactional memory, where the hardware itself supports atomic opera-
tions; the term derives from database transactions, which have a similar integrity problem. In transac-
tional memory, a process will perform a normal memory update, unless the processor detects a conflict
with an update from another process. In that case, the updates (‘transactions’) are canceled and retried
with one processor locking the memory and the other waiting for the lock. This is an elegant solution;
however, canceling the transaction may carry a certain cost of pipeline flushing (section 1.2.5) and cache
line invalidation (section 1.5.1).

2.6.1.6 Memory models and sequential consistency

The above signaled phenomenon of a race condition means that the result of some programs can be non-
deterministic, depending on the sequence in which instructions are executed. There is a further factor
that comes into play, and which is called the memory model that a processor and/or a language uses [3].
The memory model controls how the activity of one thread or core is seen by other threads or cores.

As an example, consider

initially: A=B=0;, then
process 1: A=1; x = B;
process 2: B=1; y = A;
As above, we have three scenarios, which we describe by giving a global sequence of statements:

scenario 1. scenario 2. scenario 3.

A ← 1 A ← 1 B ← 1
x ← B B ← 1 y ← A
B ← 1 x ← B A ← 1
y ← A y ← A x ← B

𝑥 = 0, 𝑦 = 1 𝑥 = 1, 𝑦 = 1 𝑥 = 1, 𝑦 = 0
(In the second scenario, statements 1,2 can be reversed, as can 3,4, without change in outcome.)

The three different outcomes can be characterized as being computed by a global ordering on the state-
ments that respects the local orderings. This is known as sequential consistency: the parallel outcome is
consistent with a sequential execution that interleaves the parallel computations, respecting their local
statement orderings.

Maintaining sequential consistency is expensive: it means that any change to a variable immediately needs
to be visible on all other threads, or that any access to a variable on a thread needs to consult all other
threads. We discussed this in section 1.5.1.
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In a relaxed memory model it is possible to get a result that is not sequentially consistent. Suppose, in the
above example, that the compiler decides to reorder the statements for the two processes, since the read
and write are independent. In effect we get a fourth scenario:

scenario 4.

x ← B
y ← A
A ← 1
B ← 1

𝑥 = 0, 𝑦 = 0
leading to the result 𝑥 = 0, 𝑦 = 0, which was not possible under the sequentially consistent model above.
(There are algorithms for finding such dependencies [121].)

Sequential consistency implies that
integer n
n = 0
!$omp parallel shared(n)
n = n + 1
!$omp end parallel

should have the same effect as
n = 0
n = n+1 ! for processor 0
n = n+1 ! for processor 1

! et cetera

With sequential consistency it is no longer necessary to declare atomic operations or critical sections;
however, this puts strong demands on the implementation of the model, so it may lead to inefficient code.

2.6.1.7 Affinity

Thread programming is very flexible, effectively creating parallelism as needed. However, a large part of
this book is about the importance of data movement in scientific computations, and that aspect can not
be ignored in thread programming.

In the context of a multicore processor, any thread can be scheduled to any core, and there is no immediate
problemwith this. However, if you care about high performance, this flexibility can have unexpected costs.
There are various reasons why you want to certain threads to run only on certain cores. Since the OS is
allowed to migrate threads, may be you simply want threads to stay in place.

• If a thread migrates to a different core, and that core has its own cache, you lose the contents of
the original cache, and unnecessary memory transfers will occur.

• If a thread migrates, there is nothing to prevent the OS from putting two threads on one core,
and leaving another core completely unused. This obviously leads to less than perfect speedup,
even if the number of threads equals the number of cores.
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We call affinity the mapping between threads (thread affinity) or processes (process affinity) and cores.
Affinity is usually expressed as a mask: a description of the locations where a thread is allowed to run.

As an example, consider a two-socket node, where each socket has four cores.

With two threads and socket affinity we have the following affinity mask:

thread socket 0 socket 1

0 0-1-2-3
1 4-5-6-7

With core affinity the mask depends on the affinity type. The typical strategies are ‘close’ and ‘spread’.
With close affinity, the mask could be:

thread socket 0 socket 1

0 0
1 1

Having two threads on the same socket means that they probably share an L2 cache, so this strategy is
appropriate if they share data.

On the other hand, with spread affinity the threads are placed further apart:

thread socket 0 socket 1

0 0
1 4

This strategy is better for bandwidth-bound applications, since now each thread has the bandwidth of a
socket, rather than having to share it in the ‘close’ case.

If you assign all cores, the close and spread strategies lead to different arrangements:

Close
socket 0 socket 1

0-1-2-3
4-5-6-7

Spread
socket 0 socket 1

0-2-4-6
1-3-5-7

Affinity and data access patterns Affinity can also be considered as a strategy of binding execution
to data.

Consider this code:

for (i=0; i<ndata; i++) // this loop will be done by threads
x[i] = ....

for (i=0; i<ndata; i++) // as will this one
... = .... x[i] ...
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The first loop, by accessing elements of 𝑥 , bringmemory into cache or page table. The second loop accesses
elements in the same order, so having a fixed affinity is the right decision for performance.

In other cases a fixed mapping is not the right solution:

for (i=0; i<ndata; i++) // produces loop
x[i] = ....

for (i=0; i<ndata; i+=2) // use even indices
... = ... x[i] ...

for (i=1; i<ndata; i+=2) // use odd indices
... = ... x[i] ...

In this second example, either the program has to be transformed, or the programmer has to maintain in
effect a task queue.

First touch It is natural to think of affinity in terms of ‘put the execution where the data is’. However,
in practice the opposite view sometimes makes sense. For instance, figure 2.9 showed how the shared
memory of a cluster node can actually be distributed. Thus, a thread can be attached to a socket, but data
can be allocated by the OS on any of the sockets. The mechanism that is often used by the OS is called
the first-touch policy:

• When the program allocates data, the OS does not actually create it;
• instead, the memory area for the data is created the first time a thread accesses it;
• thus, the first thread to touch the area in effect causes the data to be allocated on the memory of
its socket.

Exercise 2.21. Explain the problem with the following code:
// serial initialization
for (i=0; i<N; i++)

a[i] = 0.;
#pragma omp parallel for
for (i=0; i<N; i++)

a[i] = b[i] + c[i];

For an in-depth discussion of memory policies, see [128].

2.6.1.8 Cilk Plus

Other programmingmodels based on threads exist. For instance, Intel Cilk Plus (http://www.cilkplus.
org/) is a set of extensions of C/C++ with which a programmer can create threads.

Figure 2.14 shows the Fibonacci numbers calculation, sequentially and threaded with Cilk. In this example,
the variable rst is updated by two, potentially independent threads. The semantics of this update, that is,
the precise definition of how conflicts such as simultaneous writes are resolved, is defined by sequential
consistency; see section 2.6.1.6.
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Sequential code:
int fib(int n){

if (n<2) return 1;
else {

int rst=0;
rst += fib(n-1);
rst += fib(n-2);
return rst;
}

}

Cilk code:
cilk int fib(int n){

if (n<2) return 1;
else {

int rst=0;
rst += cilk_spawn fib(n-1);
rst += cilk_spawn fib(n-2);
cilk_sync;
return rst;
}

}

Figure 2.14: Sequential and Cilk code for Fibonacci numbers.

2.6.1.9 Hyperthreading versus multi-threading

In the above examples you saw that the threads that are spawned during one program run essentially
execute the same code, and have access to the same data. Thus, at a hardware level, a thread is uniquely
determined by a small number of local variables, such as its location in the code (the program counter)
and intermediate results of the current computation it is engaged in.

Hyperthreading is an Intel technology to let multiple threads use the processor truly simultaneously, so
that part of the processor would be optimally used.

If a processor switches between executing one thread and another, it saves this local information of the
one thread, and loads the information of the other. The cost of doing this is modest compared to running
a whole program, but can be expensive compared to the cost of a single instruction. Thus, hyperthreading
may not always give a performance improvement.

Certain architectures have support formulti-threading. This means that the hardware actually has explicit
storage for the local information of multiple threads, and switching between the threads can be very fast.
This is the case onGPUs (section 2.9.3), and on the Intel Xeon Phi architecture, where each core can support
up to four threads.

However, the hyperthreads share the functional units of the core, that is, the arithmetic processing.
Therefore, multiple active threads will not give a proportional increase in performance for computation-
dominated codes. Most gain is expected in the case where the threads are heterogeneous in character.

2.6.2 OpenMP

OpenMP is an extension to the programming languages C and Fortran. Its main approach to parallelism
is the parallel execution of loops: based on compiler directives, a preprocessor can schedule the parallel
execution of the loop iterations.
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Since OpenMP is based on threads, it features dynamic parallelism: the number of execution streams
operating in parallel can vary from one part of the code to another. Parallelism is declared by creating
parallel regions, for instance indicating that all iterations of a loop nest are independent, and the runtime
system will then use whatever resources are available.

OpenMP is not a language, but an extension to the existing C and Fortran languages. It mostly operates by
inserting directives into source code, which are interpreted by the compiler. It also has a modest number
of library calls, but these are not the main point, unlike in MPI (section 2.6.3.3). Finally, there is a runtime
system that manages the parallel execution.

OpenMP has an important advantage over MPI in its programmability: it is possible to start with a se-
quential code and transform it by incremental parallelization. By contrast, turning a sequential code into
a distributed memory MPI program is an all-or-nothing affair.

Many compilers, such as gcc or the Intel compiler, support the OpenMP extensions. In Fortran, OpenMP
directives are placed in comment statements; in C, they are placed in #pragma CPP directives, which
indicate compiler specific extensions. As a result, OpenMP code still looks like legal C or Fortran to a
compiler that does not support OpenMP. Programs need to be linked to an OpenMP runtime library, and
their behavior can be controlled through environment variables.

For more information about OpenMP, see [32] and http://openmp.org/wp/.

2.6.2.1 OpenMP examples

The simplest example of OpenMP use is the parallel loop.

#pragma omp parallel for
for (i=0; i<ProblemSize; i++) {

a[i] = b[i];
}

Clearly, all iterations can be executed independently and in any order. The pragma CPP directive then
conveys this fact to the compiler.

Some loops are fully parallel conceptually, but not in implementation:

for (i=0; i<ProblemSize; i++) {
t = b[i]*b[i];
a[i] = sin(t) + cos(t);

}

Here it looks as if each iteration writes to, and reads from, a shared variable t. However, t is really a
temporary variable, local to each iteration. Code that should be parallelizable, but is not due to such
constructs, is called not thread safe.

OpenMP indicates that the temporary is private to each iteration as follows:

#pragma omp parallel for shared(a,b), private(t)
for (i=0; i<ProblemSize; i++) {

t = b[i]*b[i];
a[i] = sin(t) + cos(t);

}
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If a scalar is indeed shared, OpenMP has various mechanisms for dealing with that. For instance, shared
variables commonly occur in reduction operations:

sum = 0;
#pragma omp parallel for reduction(+:sum)

for (i=0; i<ProblemSize; i++) {
sum = sum + a[i]*b[i];

}

As you see, a sequential code can be parallelized with minimal effort.

The assignment of iterations to threads is done by the runtime system, but the user can guide this assign-
ment. We are mostly concerned with the case where there are more iterations than threads: if there are 𝑃
threads and 𝑁 iterations and 𝑁 > 𝑃 , how is iteration 𝑖 going to be assigned to a thread?

The simplest assignment uses round-robin task scheduling, a static scheduling strategy where thread 𝑝
gets iterations 𝑝 × (𝑁/𝑃), … , (𝑝 + 1) × (𝑁/𝑃) − 1. This has the advantage that if some data is reused
between iterations, it will stay in the data cache of the processor executing that thread. On the other
hand, if the iterations differ in the amount of work involved, the process may suffer from load unbalance
with static scheduling. In that case, a dynamic scheduling strategy would work better, where each thread
starts work on the next unprocessed iteration as soon as it finishes its current iteration. See the example
in section 2.10.2.

You can control OpenMP scheduling of loop iterations with the schedule keyword; its values include
static and dynamic. It is also possible to indicate a chunksize, which controls the size of the block
of iterations that gets assigned together to a thread. If you omit the chunksize, OpenMP will divide the
iterations into as many blocks as there are threads.

Exercise 2.22. Let’s say there are 𝑡 threads, and your code looks like

for (i=0; i<N; i++) {
a[i] = // some calculation

}

If you specify a chunksize of 1, iterations 0, 𝑡 , 2𝑡, … go to the first thread, 1, 1+ 𝑡, 1+2𝑡, …
to the second, et cetera. Discuss why this is a bad strategy from a performance point of
view. Hint: look up the definition of false sharing. What would be a good chunksize?

2.6.3 Distributed memory programming through message passing

While OpenMP programs, and programs written using other shared memory paradigms, still look very
much like sequential programs, this does not hold true for message passing code. Before we discuss the
Message Passing Interface (MPI) library in some detail, we will take a look at this shift the way parallel
code is written.

2.6.3.1 The global versus the local view in distributed programming

There can be a marked difference between how a parallel algorithm looks to an observer, and how it is
actually programmed. Consider the case where we have an array of processors {𝑃𝑖}𝑖=0..𝑝−1, each containing
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Figure 2.15: Local and resulting global view of an algorithm for sending data to the right.

one element of the arrays 𝑥 and 𝑦 , and 𝑃𝑖 computes

{𝑦𝑖 ← 𝑦𝑖 + 𝑥𝑖−1 𝑖 > 0
𝑦𝑖 unchanged 𝑖 = 0 (2.4)

The global description of this could be

• Every processor 𝑃𝑖 except the last sends its 𝑥 element to 𝑃𝑖+1;
• every processor 𝑃𝑖 except the first receive an 𝑥 element from their neighbor 𝑃𝑖−1, and
• they add it to their 𝑦 element.

However, in general we can not code in these global terms. In the SPMD model (section 2.3.2) each pro-
cessor executes the same code, and the overall algorithm is the result of these individual behaviors. The
local program has access only to local data – everything else needs to be communicated with send and
receive operations – and the processor knows its own number.

One possible way of writing this would be

• If I am processor 0 do nothing. Otherwise receive a 𝑦 element from the left, add it tomy 𝑥 element.
• If I am the last processor do nothing. Otherwise send my 𝑦 element to the right.

At first we look at the case where sends and receives are so-called blocking communication instructions:
a send instruction does not finish until the sent item is actually received, and a receive instruction waits
for the corresponding send. This means that sends and receives between processors have to be carefully
paired. We will now see that this can lead to various problems on the way to an efficient code.

The above solution is illustrated in figure 2.15, where we show the local timelines depicting the local
processor code, and the resulting global behavior. You see that the processors are not working at the same
time: we get serialized execution.

What if we reverse the send and receive operations?

• If I am not the last processor, send my 𝑥 element to the right;
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Figure 2.16: Local and resulting global view of an algorithm for sending data to the right.

• If I am not the first processor, receive an 𝑥 element from the left and add it to my 𝑦 element.

This is illustrated in figure 2.16 and you see that again we get a serialized execution, except that now the
processors are activated right to left.

If the algorithm in equation 2.4 had been cyclic:

{𝑦𝑖 ← 𝑦𝑖 + 𝑥𝑖−1 𝑖 = 1… 𝑛 − 1
𝑦0 ← 𝑦0 + 𝑥𝑛−1 𝑖 = 0 (2.5)

the problem would be even worse. Now the last processor can not start its receive since it is blocked
sending 𝑥𝑛−1 to processor 0. This situation, where the program can not progress because every processor
is waiting for another, is called deadlock.

The solution to getting an efficient code is to make as much of the communication happen simultaneously
as possible. After all, there are no serial dependencies in the algorithm. Thus we program the algorithm
as follows:

• If I am an odd numbered processor, I send first, then receive;
• If I am an even numbered processor, I receive first, then send.

This is illustrated in figure 2.17, and we see that the execution is now parallel.

Exercise 2.23. Take another look at figure 2.3 of a parallel reduction. The basic actions are:
• receive data from a neighbor
• add it to your own data
• send the result on.

As you see in the diagram, there is at least one processor who does not send data on,
and others may do a variable number of receives before they send their result on.
Write node code so that an SPMD program realizes the distributed reduction. Hint: write
each processor number in binary. The algorithm uses a number of steps that is equal to
the length of this bitstring.
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Figure 2.17: Local and resulting global view of an algorithm for sending data to the right.

• Assuming that a processor receives a message, express the distance to the origin
of that message in the step number.

• Every processor sends at most one message. Express the step where this happens
in terms of the binary processor number.

2.6.3.2 Blocking and non-blocking communication

The reason for blocking instructions is to prevent accumulation of data in the network. If a send instruction
were to complete before the corresponding receive started, the network would have to store the data
somewhere in the mean time. Consider a simple example:

buffer = ... ; // generate some data
send(buffer,0); // send to processor 0
buffer = ... ; // generate more data
send(buffer,1); // send to processor 1

After the first send, we start overwriting the buffer. If the data in it hasn’t been received, the first set of
values would have to be buffered somewhere in the network, which is not realistic. By having the send
operation block, the data stays in the sender’s buffer until it is guaranteed to have been copied to the
recipient’s buffer.

One way out of the problem of sequentialization or deadlock that arises from blocking instruction is the
use of non-blocking communication instructions, which include explicit buffers for the data. With non-
blocking send instruction, the user needs to allocate a buffer for each send, and check when it is safe to
overwrite the buffer.

buffer0 = ... ; // data for processor 0
send(buffer0,0); // send to processor 0
buffer1 = ... ; // data for processor 1
send(buffer1,1); // send to processor 1
...
// wait for completion of all send operations.
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2.6.3.3 The MPI library

If OpenMP is the way to program shared memory, Message Passing Interface (MPI) [174] is the standard
solution for programming distributed memory. MPI (‘Message Passing Interface’) is a specification for a
library interface for moving data between processes that do not otherwise share data. The MPI routines
can be divided roughly in the following categories:

• Process management. This includes querying the parallel environment and constructing subsets
of processors.

• Point-to-point communication. This is a set of calls where two processes interact. These are
mostly variants of the send and receive calls.

• Collective calls. In these routines, all processors (or the whole of a specified subset) are involved.
Examples are the broadcast call, where one processor shares its data with every other processor,
or the gather call, where one processor collects data from all participating processors.

Let us consider how the OpenMP examples can be coded in MPI3. First of all, we no longer allocate
double a[ProblemSize];

but
double a[LocalProblemSize];

where the local size is roughly a 1/𝑃 fraction of the global size. (Practical considerations dictate whether
you want this distribution to be as evenly as possible, or rather biased in some way.)

The parallel loop is trivially parallel, with the only difference that it now operates on a fraction of the
arrays:

for (i=0; i<LocalProblemSize; i++) {
a[i] = b[i];

}

However, if the loop involves a calculation based on the iteration number, we need to map that to the
global value:

for (i=0; i<LocalProblemSize; i++) {
a[i] = b[i]+f(i+MyFirstVariable);

}

(Wewill assume that each process has somehow calculated the values of LocalProblemSize and MyFirstVariable.)
Local variables are now automatically local, because each process has its own instance:

for (i=0; i<LocalProblemSize; i++) {
t = b[i]*b[i];
a[i] = sin(t) + cos(t);

}

3. This is not a course in MPI programming, and consequently the examples will leave out many details of the MPI calls. If
you want to learn MPI programming, consult for instance [86, 89, 87].
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However, shared variables are harder to implement. Since each process has its own data, the local accu-
mulation has to be explicitly assembled:

for (i=0; i<LocalProblemSize; i++) {
s = s + a[i]*b[i];

}
MPI_Allreduce(s,globals,1,MPI_DOUBLE,MPI_SUM);

The ‘reduce’ operation sums together all local values s into a variable globals that receives an identical
value on each processor. This is known as a collective operation.

Let us make the example slightly more complicated:

for (i=0; i<ProblemSize; i++) {
if (i==0)
a[i] = (b[i]+b[i+1])/2

else if (i==ProblemSize-1)
a[i] = (b[i]+b[i-1])/2

else
a[i] = (b[i]+b[i-1]+b[i+1])/3

}

If we had shared memory, we could write the following parallel code:

for (i=0; i<LocalProblemSize; i++) {
bleft = b[i-1]; bright = b[i+1];
a[i] = (b[i]+bleft+bright)/3

}

To turn this into valid distributed memory code, first we account for the fact that bleft and bright need
to be obtained from a different processor for i==0 (bleft), and for i==LocalProblemSize-1 (bright).
We do this with a exchange operation with our left and right neighbor processor:

// get bfromleft and bfromright from neighbor processors, then
for (i=0; i<LocalProblemSize; i++) {

if (i==0) bleft=bfromleft;
else bleft = b[i-1]

if (i==LocalProblemSize-1) bright=bfromright;
else bright = b[i+1];

a[i] = (b[i]+bleft+bright)/3
}

Obtaining the neighbor values is done as follows. First we need to ask our processor number, so that we
can start a communication with the processor with a number one higher and lower.
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MPI_Comm_rank(MPI_COMM_WORLD,&myTaskID);
MPI_Sendrecv

(/* to be sent: */ &b[LocalProblemSize-1],
/* destination */ myTaskID+1,
/* to be recvd: */ &bfromleft,
/* source: */ myTaskID-1,
/* some parameters omitted */
);

MPI_Sendrecv(&b[0],myTaskID-1,
&bfromright, /* ... */ );

There are still two problems with this code. First, the sendrecv operations need exceptions for the first
and last processors. This can be done elegantly as follows:

MPI_Comm_rank(MPI_COMM_WORLD,&myTaskID);
MPI_Comm_size(MPI_COMM_WORLD,&nTasks);
if (myTaskID==0) leftproc = MPI_PROC_NULL;
else leftproc = myTaskID-1;

if (myTaskID==nTasks-1) rightproc = MPI_PROC_NULL;
else rightproc = myTaskID+1;

MPI_Sendrecv( &b[LocalProblemSize-1], &bfromleft, rightproc );
MPI_Sendrecv( &b[0], &bfromright, leftproc);

Exercise 2.24. There is still a problem left with this code: the boundary conditions from the
original, global, version have not been taken into account. Give code that solves that
problem.

MPI gets complicated if different processes need to take different actions, for example, if one needs to
send data to another. The problem here is that each process executes the same executable, so it needs
to contain both the send and the receive instruction, to be executed depending on what the rank of the
process is.

if (myTaskID==0) {
MPI_Send(myInfo,1,MPI_INT,/* to: */ 1,/* labeled: */,0,

MPI_COMM_WORLD);
} else {
MPI_Recv(myInfo,1,MPI_INT,/* from: */ 0,/* labeled: */,0,

/* not explained here: */&status,MPI_COMM_WORLD);
}

2.6.3.4 Blocking

Although MPI is sometimes called the ‘assembly language of parallel programming’, for its perceived
difficulty and level of explicitness, it is not all that hard to learn, as evinced by the large number of scientific
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codes that use it. The main issues that make MPI somewhat intricate to use are buffer management and
blocking semantics.

These issues are related, and stem from the fact that, ideally, data should not be in two places at the same
time. Let us briefly consider what happens if processor 1 sends data to processor 2. The safest strategy is
for processor 1 to execute the send instruction, and then wait until processor 2 acknowledges that the data
was successfully received. This means that processor 1 is temporarily blocked until processor 2 actually
executes its receive instruction, and the data has made its way through the network. This is the standard
behavior of the MPI_Send and MPI_Recv calls, which are said to use blocking communication.

Alternatively, processor 1 could put its data in a buffer, tell the system tomake sure that it gets sent at some
point, and later checks to see that the buffer is safe to reuse. This second strategy is called non-blocking
communication, and it requires the use of a temporary buffer.

2.6.3.5 Collective operations

In the above examples, you saw the MPI_Allreduce call, which computed a global sum and left the
result on each processor. There is also a local version MPI_Reduce which computes the result only on
one processor. These calls are examples of collective operations or collectives. The collectives are:

reduction : each processor has a data item, and these items need to be combined arithmetically with an
addition, multiplication, max, or min operation. The result can be left on one processor, or on all,
in which case we call this an allreduce operation.

broadcast : one processor has a data item that all processors need to receive.
gather : each processor has a data item, and these items need to be collected in an array, without com-

bining them in an operations such as an addition. The result can be left on one processor, or on
all, in which case we call this an allgather.

scatter : one processor has an array of data items, and each processor receives one element of that array.
all-to-all : each processor has an array of items, to be scattered to all other processors.

Collective operations are blocking (see section 2.6.3.4), although MPI 3.0 (which is currently only a draft)
will have non-blocking collectives. Wewill analyze the cost of collective operations in detail in section 6.1.

2.6.3.6 Non-blocking communication

In a simple computer program, each instruction takes some time to execute, in a way that depends onwhat
goes on in the processor. In parallel programs the situation is more complicated. A send operation, in its
simplest form, declares that a certain buffer of data needs to be sent, and program execution will then stop
until that buffer has been safely sent and received by another processor. This sort of operation is called
a non-local operation since it depends on the actions of other processes, and a blocking communication
operation since execution will halt until a certain event takes place.

Blocking operations have the disadvantage that they can lead to deadlock. In the context of message
passing this describes the situation that a process is waiting for an event that never happens; for instance,
it can be waiting to receive a message and the sender of that message is waiting for something else.
Deadlock occurs if two processes are waiting for each other, or more generally, if you have a cycle of
processes where each is waiting for the next process in the cycle. Example:
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if ( /* this is process 0 */ )
// wait for message from 1

else if ( /* this is process 1 */ )
// wait for message from 0

A block receive here leads to deadlock. Even without deadlock, they can lead to considerable idle time
in the processors, as they wait without performing any useful work. On the other hand, they have the
advantage that it is clear when the buffer can be reused: after the operation completes, there is a guarantee
that the data has been safely received at the other end.

The blocking behavior can be avoided, at the cost of complicating the buffer semantics, by using non-
blocking communication operations. A non-blocking send (MPI_Isend) declares that a data buffer needs
to be sent, but then does not wait for the completion of the corresponding receive. There is a second
operation MPI_Wait that will actually block until the receive has been completed. The advantage of this
decoupling of sending and blocking is that it now becomes possible to write:

MPI_ISend(somebuffer,&handle); // start sending, and
// get a handle to this particular communication

{ ... } // do useful work on local data
MPI_Wait(handle); // block until the communication is completed;
{ ... } // do useful work on incoming data

With a little luck, the local operations take more time than the communication, and you have completely
eliminated the communication time.

In addition to non-blocking sends, there are non-blocking receives. A typical piece of code then looks like

MPI_ISend(sendbuffer,&sendhandle);
MPI_IReceive(recvbuffer,&recvhandle);
{ ... } // do useful work on local data
MPI_Wait(sendhandle); Wait(recvhandle);
{ ... } // do useful work on incoming data

Exercise 2.25. Take another look at equation (2.5) and give pseudocode that solves the problem
using non-blocking sends and receives. What is the disadvantage of this code over a
blocking solution?

2.6.3.7 MPI version 1 and 2 and 3

The first MPI standard [154] had a number of notable omissions, which are included in the MPI 2 stan-
dard [88]. One of these concerned parallel input/output: there was no facility for multiple processes to
access the same file, even if the underlying hardware would allow that. A separate project MPI-I/O has
now been rolled into the MPI-2 standard. We will discuss parallel I/O in this book.

A second facility missing in MPI, though it was present in PVM [50, 71] which predates MPI, is process
management: there is no way to create new processes and have them be part of the parallel run.
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Finally, MPI-2 has support for one-sided communication: one process puts data into the memory of an-
other, without the receiving process doing an actual receive instruction. We will have a short discussion
in section 2.6.3.8 below.

With MPI-3 the standard has gained a number of new features, such as non-blocking collectives, neigh-
borhood collectives, and a profiling interface. The one-sided mechanisms have also been updated.

2.6.3.8 One-sided communication

The MPI way of writing matching send and receive instructions is not ideal for a number of reasons. First
of all, it requires the programmer to give the same data description twice, once in the send and once in
the receive call. Secondly, it requires a rather precise orchestration of communication if deadlock is to
be avoided; the alternative of using asynchronous calls is tedious to program, requiring the program to
manage a lot of buffers. Lastly, it requires a receiving processor to know howmany incoming messages to
expect, which can be tricky in irregular applications. Life would be so much easier if it was possible to pull
data from another processor, or conversely to put it on another processor, without that other processor
being explicitly involved.

This style of programming is further encouraged by the existence of Remote Direct Memory Access (RDMA)
support on some hardware. An early example was the Cray T3E. These days, one-sided communication
is widely available through its incorporation in the MPI-2 library; section 2.6.3.7.

Let us take a brief look at one-sided communication in MPI-2, using averaging of array values as an
example:

∀𝑖∶ 𝑎𝑖 ← (𝑎𝑖 + 𝑎𝑖−1 + 𝑎𝑖+1)/3.
The MPI parallel code will look like

// do data transfer
a_local = (a_local+left+right)/3

It is clear what the transfer has to accomplish: the a_local variable needs to become the left variable
on the processor with the next higher rank, and the right variable on the one with the next lower rank.

First of all, processors need to declare explicitly what memory area is available for one-sided transfer,
the so-called ‘window’. In this example, that consists of the a_local, left, and right variables on the
processors:

MPI_Win_create(&a_local,...,&data_window);
MPI_Win_create(&left,....,&left_window);
MPI_Win_create(&right,....,&right_window);

The code now has two options: it is possible to push data out
target = my_tid-1;
MPI_Put(&a_local,...,target,right_window);
target = my_tid+1;
MPI_Put(&a_local,...,target,left_window);
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or to pull it in

data_window = a_local;
source = my_tid-1;
MPI_Get(&right,...,data_window);
source = my_tid+1;
MPI_Get(&left,...,data_window);

The above code will have the right semantics if the Put and Get calls are blocking; see section 2.6.3.4.
However, part of the attraction of one-sided communication is that it makes it easier to express commu-
nication, and for this, a non-blocking semantics is assumed.

The problem with non-blocking one-sided calls is that it becomes necessary to ensure explicitly that
communication is successfully completed. For instance, if one processor does a one-sided put operation
on another, the other processor has no way of checking that the data has arrived, or indeed that transfer
has begun at all. Therefore it is necessary to insert a global barrier in the program, for which every package
has its own implementation. In MPI-2 the relevant call is the MPI_Win_fence routine. These barriers in
effect divide the program execution in supersteps; see section 2.6.8.

Another form of one-sided communication is used in the Charm++ package; see section 2.6.7.

2.6.4 Hybrid shared/distributed memory computing

Modern architectures are often a mix of shared and distributed memory. For instance, a cluster will be
distributed on the level of the nodes, but sockets and cores on a node will have shared memory. One level
up, each socket can have a shared L3 cache but separate L2 and L1 caches. Intuitively it seems clear that a
mix of shared and distributed programming techniques would give code that is optimally matched to the
architecture. In this section we will discuss such hybrid programming models, and discuss their efficacy.

A common setup of clusters uses distributedmemory nodes, where each node contains several sockets, that
share memory. This suggests using MPI to communicate between the nodes (inter-node communication)
and OpenMP for parallelism on the node (intra-node communication).

In practice this is realized as follows:

• On each node a single MPI process is started (rather than one per core);
• This one MPI process then uses OpenMP (or another threading protocol) to spawn as many
threads are there are independent sockets or cores on the node.

• The OpenMP threads can then access the shared memory of the node.

The alternative would be to have anMPI process on each core or socket and do all communication through
message passing, even between processes that can see the same shared memory.

Remark 8 For reasons of affinity it may be desirable to start one MPI process per socket, rather than per
node. This does not materially alter the above argument.

This hybrid strategy may sound like a good idea but the truth is complicated.
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• Message passing between MPI processes sounds like it’s more expensive than communicating
through shared memory. However, optimized versions of MPI can typically detect when pro-
cesses are on the same node, and they will replace the message passing by a simple data copy.
The only argument against using MPI is then that each process has its own data space, so there
is memory overhead because each process has to allocate space for buffers and duplicates of the
data that is copied.

• Threading is more flexible: if a certain part of the code needs more memory per process, an
OpenMP approach could limit the number of threads on that part. On the other hand, flexible
handling of threads incurs a certain amount of OS overhead that MPI does not have with its fixed
processes.

• Shared memory programming is conceptually simple, but there can be unexpected performance
pitfalls. For instance, the performance of two processes can now be impeded by the need for
maintaining cache coherence and by false sharing.

On the other hand, the hybrid approach offers some advantage since it bundles messages. For instance, if
two MPI processes on one node send messages to each of two processes on another node there would be
four messages; in the hybrid model these would be bundled into one message.

Exercise 2.26. Analyze the discussion in the last item above. Assume that the bandwidth be-
tween the two nodes is only enough to sustain one message at a time. What is the cost
savings of the hybrid model over the purely distributed model? Hint: consider band-
width and latency separately.

This bundling of MPI processes may have an advantage for a deeper technical reason. In order to support a
handshake protocol, each MPI process needs a small amount of buffer space for each other process. With a
larger number of processes this can be a limitation, so bundling is attractive on high core count processors
such as the Intel Xeon Phi.

TheMPI library is explicit aboutwhat sort of threading it supports: you can querywhethermulti-threading
is supported at all, whether all MPI calls have to originate from one thread or one thread at-a-time, or
whether there is complete freedom in making MPI calls from threads.

2.6.5 Parallel languages

One approach to mitigating the difficulty of parallel programming is the design of languages that offer
explicit support for parallelism. There are several approaches, and we will see some examples.

• Some languages reflect the fact that many operations in scientific computing are data parallel
(section 2.5.1). Languages such as High Performance Fortran (HPF) (section 2.6.5.3) have an array
syntax, where operations such as addition of arrays can be expressed as A = B+C. This syntax
simplifies programming, but more importantly, it specifies operations at an abstract level, so
that a lower level can make specific decision about how to handle parallelism. However, the
data parallelism expressed in HPF is only of the simplest sort, where the data are contained in
regular arrays. Irregular data parallelism is harder; the Chapel language (section 2.6.5.5) makes
an attempt at addressing this.

• Another concept in parallel languages, not necessarily orthogonal to the previous, is that of
Partitioned Global Address Space (PGAS) model: there is only one address space (unlike in the
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MPI model), but this address space is partitioned, and each partition has affinity with a thread
or process. Thus, this model encompasses both SMP and distributed shared memory. A typical
PGAS language, Unified Parallel C (UPC), allows you to write programs that for the most part
looks like regular C code. However, by indicating how the major arrays are distributed over
processors, the program can be executed in parallel.

2.6.5.1 Discussion

Parallel languages hold the promise of making parallel programming easier, since they make communi-
cation operations appear as simple copies or arithmetic operations. However, by doing so they invite the
user to write code that may not be efficient, for instance by inducing many small messages.

Figure 2.18: Data shift that requires communication.

As an example, consider arrays a,b that have been horizontally partitioned over the processors, and that
are shifted (see figure 2.18):

for (i=0; i<N; i++)
for (j=0; j<N/np; j++)

a[i][j+joffset] = b[i][j+1+joffset]

If this code is executed on a shared memory machine, it will be efficient, but a naive translation in the
distributed case will have a single number being communicated in each iteration of the i loop. Clearly,
these can be combined in a single buffer send/receive operation, but compilers are usually unable to make
this transformation. As a result, the user is forced to, in effect, re-implement the blocking that needs to
be done in an MPI implementation:

for (i=0; i<N; i++)
t[i] = b[i][N/np+joffset]
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for (i=0; i<N; i++)
for (j=0; j<N/np-1; j++) {
a[i][j] = b[i][j+1]
a[i][N/np] = t[i]

}

On the other hand, certain machines support direct memory copies through global memory hardware.
In that case, PGAS languages can be more efficient than explicit message passing, even with physically
distributed memory.

2.6.5.2 Unified Parallel C

Unified Parallel C (UPC) [181] is an extension to the C language. Its main source of parallelism is data
parallelism, where the compiler discovers independence of operations on arrays, and assigns them to
separate processors. The language has an extended array declaration, which allows the user to specify
whether the array is partitioned by blocks, or in a round-robin fashion.

The following program in UPC performs a vector-vector addition.

//vect_add.c
#include <upc_relaxed.h>
#define N 100*THREADS
shared int v1[N], v2[N], v1plusv2[N];
void main() {

int i;
for(i=MYTHREAD; i<N; i+=THREADS)
v1plusv2[i]=v1[i]+v2[i];

}

The same program with an explicitly parallel loop construct:

//vect_add.c
#include <upc_relaxed.h>
#define N 100*THREADS
shared int v1[N], v2[N], v1plusv2[N];
void main()
{

int i;
upc_forall(i=0; i<N; i++; i)
v1plusv2[i]=v1[i]+v2[i];

}

is comparable to UPC in spirit, but based on Java rather than on C.
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2.6.5.3 High Performance Fortran

High Performance Fortran4 (HPF) is an extension of Fortran 90 with constructs that support parallel
computing, published by the High Performance Fortran Forum (HPFF). The HPFF was convened and
chaired by Ken Kennedy of Rice University. The first version of the HPF Report was published in 1993.

Building on the array syntax introduced in Fortran 90, HPF uses a data parallel model of computation to
support spreading the work of a single array computation over multiple processors. This allows efficient
implementation on both SIMD and MIMD style architectures. HPF features included:

• New Fortran statements, such as FORALL, and the ability to create PURE (side effect free) pro-
cedures;

• The use of compiler directives for recommended distributions of array data;
• Extrinsic procedure interface for interfacing to non-HPF parallel procedures such as those using
message passing;

• Additional library routines, including environmental inquiry, parallel prefix/suffix (e.g., ’scan’),
data scattering, and sorting operations.

Fortran 95 incorporated several HPF capabilities. While some vendors did incorporate HPF into their
compilers in the 1990s, some aspects proved difficult to implement and of questionable use. Since then,
most vendors and users have moved to OpenMP-based parallel processing. However, HPF continues to
have influence. For example the proposed BIT data type for the upcoming Fortran-2008 standard contains
a number of new intrinsic functions taken directly from HPF.

2.6.5.4 Co-array Fortran

Co-array Fortran (CAF) is an extension to the Fortran 95/2003 language. The main mechanism to support
parallelism is an extension to the array declaration syntax, where an extra dimension indicates the parallel
distribution. For instance, in

Real,dimension(100),codimension[*] :: X
Real :: Y(100)[*]
Real :: Z(100,200)[10,0:9,*]

arrays X,Y have 100 elements on each processor. Array Z behaves as if the available processors are on a
three-dimensional grid, with two sides specified and the third adjustable to accommodate the available
processors.

Communication between processors is now done through copies along the (co-)dimensions that describe
the processor grid. The Fortran 2008 standard includes co-arrays.

2.6.5.5 Chapel

Chapel [31] is a new parallel programming language5 being developed by Cray Inc. as part of the DARPA-
led High Productivity Computing Systems program (HPCS). Chapel is designed to improve the produc-
tivity of high-end computer users while also serving as a portable parallel programming model that can

4. This section quoted from Wikipedia
5. This section quoted from the Chapel homepage.
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be used on commodity clusters or desktop multicore systems. Chapel strives to vastly improve the pro-
grammability of large-scale parallel computers while matching or beating the performance and portability
of current programming models like MPI.

Chapel supports a multithreaded execution model via high-level abstractions for data parallelism, task
parallelism, concurrency, and nested parallelism. Chapel’s locale type enables users to specify and rea-
son about the placement of data and tasks on a target architecture in order to tune for locality. Chapel
supports global-view data aggregates with user-defined implementations, permitting operations on dis-
tributed data structures to be expressed in a natural manner. In contrast to many previous higher-level
parallel languages, Chapel is designed around a multiresolution philosophy, permitting users to initially
write very abstract code and then incrementally add more detail until they are as close to the machine
as their needs require. Chapel supports code reuse and rapid prototyping via object-oriented design, type
inference, and features for generic programming.

Chapel was designed from first principles rather than by extending an existing language. It is an im-
perative block-structured language, designed to be easy to learn for users of C, C++, Fortran, Java, Perl,
Matlab, and other popular languages. While Chapel builds on concepts and syntax from many previous
languages, its parallel features are most directly influenced by ZPL, High-Performance Fortran (HPF), and
the Cray MTA’s extensions to C and Fortran.

Here is vector-vector addition in Chapel:

const BlockDist= newBlock1D(bbox=[1..m], tasksPerLocale=...);
const ProblemSpace: domain(1, 64)) distributed BlockDist = [1..m];
var A, B, C: [ProblemSpace] real;
forall(a, b, c) in(A, B, C) do

a = b + alpha * c;

2.6.5.6 Fortress

Fortress [65] is a programming language developed by Sun Microsystems. Fortress6 aims to make paral-
lelism more tractable in several ways. First, parallelism is the default. This is intended to push tool design,
library design, and programmer skills in the direction of parallelism. Second, the language is designed to
be more friendly to parallelism. Side-effects are discouraged because side-effects require synchronization
to avoid bugs. Fortress provides transactions, so that programmers are not faced with the task of deter-
mining lock orders, or tuning their locking code so that there is enough for correctness, but not so much
that performance is impeded. The Fortress looping constructions, together with the library, turns ”itera-
tion” inside out; instead of the loop specifying how the data is accessed, the data structures specify how
the loop is run, and aggregate data structures are designed to break into large parts that can be effectively
scheduled for parallel execution. Fortress also includes features from other languages intended to gener-
ally help productivity – test code and methods, tied to the code under test; contracts that can optionally
be checked when the code is run; and properties, that might be too expensive to run, but can be fed to a
theorem prover or model checker. In addition, Fortress includes safe-language features like checked array
bounds, type checking, and garbage collection that have been proven-useful in Java. Fortress syntax is

6. This section quoted from the Fortress homepage.
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designed to resemble mathematical syntax as much as possible, so that anyone solving a problem with
math in its specification can write a program that is visibly related to its original specification.

2.6.5.7 X10

X10 is an experimental new language currently under development at IBM in collaboration with academic
partners. The X10 effort is part of the IBM PERCS project (Productive Easy-to-use Reliable Computer
Systems) in the DARPA program on High Productivity Computer Systems. The PERCS project is focused
on a hardware-software co-design methodology to integrate advances in chip technology, architecture,
operating systems, compilers, programming language and programming tools to deliver new adaptable,
scalable systems that will provide an order-of-magnitude improvement in development productivity for
parallel applications by 2010.

X10 aims to contribute to this productivity improvement by developing a new programming model, com-
bined with a new set of tools integrated into Eclipse and new implementation techniques for delivering
optimized scalable parallelism in a managed runtime environment. X10 is a type-safe, modern, parallel,
distributed object-oriented language intended to be accessible to Java(TM) programmers. It is targeted to
future low-end and high-end systems with nodes that are built out of multi-core SMP chips with non-
uniform memory hierarchies, and interconnected in scalable cluster configurations. A member of the
Partitioned Global Address Space (PGAS) family of languages, X10 highlights the explicit reification of
locality in the form of places; lightweight activities embodied in async, future, foreach, and ateach con-
structs; constructs for termination detection (finish) and phased computation (clocks); the use of lock-free
synchronization (atomic blocks); and the manipulation of global arrays and data structures.

2.6.5.8 Linda

As should be clear by now, the treatment of data is by far the most important aspect of parallel program-
ming, far more important than algorithmic considerations. The programming system Linda [72, 73], also
called a coordination language, is designed to address the data handling explicitly. Linda is not a language
as such, but can, and has been, incorporated into other languages.

The basic concept of Linda is the tuple space: data is added to a pool of globally accessible information by
adding a label to it. Processes then retrieve data by the label value, and without needing to know which
processes added the data to the tuple space.

Linda is aimed primarily at a different computation model than is relevant for HPC: it addresses the needs
of asynchronous communicating processes. However, is has been used for scientific computation [46].
For instance, in parallel simulations of the heat equation (section 4.3), processors can write their data
into tuple space, and neighboring processes can retrieve their ghost region without having to know its
provenance. Thus, Linda becomes one way of implementing one-sided communication.

2.6.5.9 The Global Arrays library

The Global Arrays library (http://www.emsl.pnl.gov/docs/global/) is another example of one-
sided communication, and in fact it predates MPI. This library has as its prime data structure Cartesian
product arrays7 , distributed over a processor grid of the same or lower dimension. Through library calls,

7. This means that if the array is three-dimensional, it can be described by three integers 𝑛1, 𝑛2, 𝑛3, and each point has a
coordinate (𝑖1, 𝑖2, 𝑖3) with 1 ≤ 𝑖1 ≤ 𝑛1 et cetera.
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any processor can access any sub-brick out of the array in either a put or get operation. These operations
are non-collective. As with any one-sided protocol, a barrier sync is necessary to ensure completion of
the sends/receives.

2.6.6 OS-based approaches

It is possible to design an architecture with a shared address space, and let the data movement be handled
by the operating system. The Kendall Square computer [119] had an architecture name ‘all-cache’, where
no data was directly associated with any processor. Instead, all data was considered to be cached on a
processor, and moved through the network on demand, much like data is moved from main memory to
cache in a regular CPU. This idea is analogous to the NUMA support in current SGI architectures.

2.6.7 Active messages

The MPI paradigm (section 2.6.3.3) is traditionally based on two-sided operations: each data transfer re-
quires an explicit send and receive operation. This approach works well with relatively simple codes,
but for complicated problems it becomes hard to orchestrate all the data movement. One of the ways to
simplify consists of using active messages. This is used in the package Charm++[115].

With active messages, one processor can send data to another, without that second processor doing an
explicit receive operation. Instead, the recipient declares code that handles the incoming data, a ‘method’
in objective orientation parlance, and the sending processor calls this method with the data that it wants
to send. Since the sending processor in effect activates code on the other processor, this is also known as
remote method invocation. A big advantage of this method is that overlap of communication and compu-
tation becomes easier to realize.

As an example, consider the matrix-vector multiplication with a tridiagonal matrix

∀𝑖∶ 𝑦𝑖 ← 2𝑥𝑖 − 𝑥𝑖+1 − 𝑥𝑖−1.
See section 4.2.2 for an explanation of the origin of this problem in PDEs. Assuming that each processor
has exactly one index 𝑖, the MPI code could look like:

if ( /* I am the first or last processor */ )
n_neighbors = 1;

else
n_neighbors = 2;

/* do the MPI_Isend operations on my local data */

sum = 2*local_x_data;
received = 0;
for (neighbor=0; neighbor<n_neighbors; neighbor++) {

MPI_WaitAny( /* wait for any incoming data */ )
sum = sum - /* the element just received */
received++
if (received==n_neighbors)

local_y_data = sum
}
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With active messages this looks like

void incorporate_neighbor_data(x) {
sum = sum-x;
if (received==n_neighbors)

local_y_data = sum
}
sum = 2*local_xdata;
received = 0;
all_processors[myid+1].incorporate_neighbor_data(local_x_data);
all_processors[myid-1].incorporate_neighbor_data(local_x_data);

2.6.8 Bulk synchronous parallelism

The MPI library (section 2.6.3.3) can lead to very efficient code. The price for this is that the programmer
needs to spell out the communication in great detail. On the other end of the spectrum, PGAS languages
(section 2.6.5) ask very little of the programmer, but give not much performance in return. One attempt to
find a middle ground is the Bulk Synchronous Parallel (BSP) model [182, 173]. Here the programmer needs
to spell out the communications, but not their ordering.

The BSP model orders the program into a sequence of supersteps, each of which ends with a barrier
synchronization. The communications that are started in one superstep are all asynchronous and rely on
the barrier for their completion. This makes programming easier and removes the possibility of deadlock.
Moreover, all communication are of the one-sided communication type.

Exercise 2.27. Consider the parallel summing example in section 2.1. Argue that a BSP imple-
mentation needs log2 𝑛 supersteps.

Because of its synchronization of the processors through the barriers concluding the supersteps the BSP
model can do a simple cost analysis of parallel algorithms.

Another aspect of the BSP model is its use of overdecomposition of the problem, where multiple processes
are assigned to each processor, as well as random placement of data and tasks. This is motivated with a
statistical argument that shows it can remedy load imbalance. If there are 𝑝 processors and if in a superstep
𝑝 remote accesses are made, with high likelihood some processor receives log 𝑝/ log log 𝑝 accesses, while
others receive none. Thus, we have a load imbalance that worsens with increasing processor count. On the
other hand, if 𝑝 log 𝑝 accesses are made, for instance because there are log 𝑝 processes on each processor,
the maximum number of accesses is 3 log 𝑝 with high probability. This means the load balance is within
a constant factor of perfect.

The BSP model is implemented in BSPlib [105]. Other system can be said to be BSP-like in that they use
the concept of supersteps; for instance Google’s Pregel [143].

2.6.9 Data dependencies

If two statements refer to the same data item, we say that there is a data dependency between the state-
ments. Such dependencies limit the extent to which the execution of the statements can be rearranged.
The study of this topic probably started in the 1960s, when processors could execute statements out of
order to increase throughput. The re-ordering of statements was limited by the fact that the execution
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had to obey the program order semantics: the result had to be as if the statements were executed strictly
in the order in which they appear in the program.

These issues of statement ordering, and therefore of data dependencies, arise in several ways:

• A parallelizing compiler has to analyze the source to determinewhat transformations are allowed;
• if you parallelize a sequential code with OpenMP directives, you have to perform such an analysis
yourself.

Here are two types of activity that require such an analysis:

• When a loop is parallelized, the iterations are no longer executed in their program order, so we
have to check for dependencies.

• The introduction of tasks also means that parts of a program can be executed in a different order
from in which they appear in a sequential execution.

The easiest case of dependency analysis is that of detecting that loop iterations can be executed indepen-
dently. Iterations are of course independent if a data item is read in two different iterations, but if the
same item is read in one iteration and written in another, or written in two different iterations, we need
to do further analysis.

Analysis of data dependencies can be performed by a compiler, but compilers take, of necessity, a conser-
vative approach. This means that iterations may be independent, but can not be recognized as such by a
compiler. Therefore, OpenMP shifts this responsibility to the programmer.

We will now discuss data depencies in some detail.

2.6.9.1 Types of data dependencies

The three types of dependencies are:

• flow dependencies, or ‘read-after-write’;
• anti dependencies, or ‘write-after-read’; and
• output dependencies, or ‘write-after-write’.

These dependencies can be studied in scalar code, and in fact compilers do this to determine whether
statements can be rearranged, but we will mostly be concerned with their appearance in loops, since in
scientific computation much of the work appears there.

Flow dependencies Flow dependencies, or read-afer-write, are not a problem if the read and write occur
in the same loop iteration:

for (i=0; i<N; i++) {
x[i] = .... ;
.... = ... x[i] ... ;

}

On the other hand, if the read happens in a later iteration, there is no simple way to parallelize or vectorize
the loop:
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for (i=0; i<N; i++) {
.... = ... x[i] ... ;
x[i+1] = .... ;

}

This usually requires rewriting the code.

Exercise 2.28. Consider the code

for (i=0; i<N; i++) {
a[i] = f(x[i]);
x[i+1] = g(b[i]);

}

where f() and g() denote arithmetical expressions with out further dependencies on
x or i. Show that this loop can be parallelized/vectorized if you are allowed to use a
temporary array.

Anti dependencies The simplest case of an anti dependency or write-after-read is a reduction:

for (i=0; i<N; i++) {
t = t + .....

}

This can be dealt with by explicit declaring the loop to be a reduction, or to use any of the other strategies
in section 6.1.2.

If the read and write are on an array the situation is more complicated. The iterations in this fragment

for (i=0; i<N; i++) {
x[i] = ... x[i+1] ... ;

}

can not be executed in arbitrary order as such. However, conceptually there is no dependency. We can
solve this by introducing a temporary array:

for (i=0; i<N; i++)
xtmp[i] = x[i];

for (i=0; i<N; i++) {
x[i] = ... xtmp[i+1] ... ;

}

This is an example of a transformation that a compiler is unlikely to perform, since it can greatly affect
the memory demands of the program. Thus, this is left to the programmer.

Output dependencies The case of an output dependency or write-after-write does not occur by itself: if
a variable is written twice in sequence without an intervening read, the first write can be removed without
changing the meaning of the program. Thus, this case reduces to a flow dependency.

Other output dependencies can also be removed. In the following code, t can be declared private, thereby
removing the dependency.
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for (i=0; i<N; i++) {
t = f(i)
s += t*t;

}

If the final value of t is wanted, the lastprivate can be used in OpenMP.

2.6.9.2 Parallelizing nested loops

In the above examples, data dependencies were non-trivial if in iteration 𝑖 of a loop different indices
appeared, such as 𝑖 and 𝑖 + 1. Conversely, loops such as

for (int i=0; i<N; i++)
x[i] = x[i]+f(i);

are simple to parallelize. Nested loops, however, take more thought. OpenMP has a ‘collapse’ directive for
loops such as

for (int i=0; i<M; i++)
for (int j=0; j<N; j++)

x[i][j] = x[i][j] + y[i] + z[j];

Here, the whole 𝑖, 𝑗 iteration space is parallel.

How is that with:

for (n = 0; n < NN; n++)
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
a[i] += B[i][j]*c[j] + d[n];

Exercise 2.29. Do a reuse analysis on this loop. Assume that a,b,c do not all fit in cache
together.
Now assume that c and one row of b fit in cache, with a little room to spare. Can you
find a loop interchange that will greatly benefit performance? Write a test to confirm
this.

Analyzing this loop nest for parallelism, you see that the j-loop is a reduction, and the n-loop has flow
dependencies: every a[i] is updated in every n-iteration. The conclusion is that you can only reasonable
parallelize the i-loop.
Exercise 2.30. Howdoes this parallelism analysis relate to the loop exchange from exercise 2.29?

Is the loop after exchange still parallelizable?
If you speak OpenMP, confirm your answer by writing code that adds up the elements
of a. You should get the same answer no matter the exchanges and the introduction of
OpenMP parallelism.

2.6.10 Program design for parallelism

A long time ago it was thought that some magic combination of compiler and runtime system could
transform an existing sequential program into a parallel one. That hope has long evaporated, so these days
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a parallel program will have been written from the ground up as parallel. Of course there are different
types of parallelism, and they each have their own implications for precisely how you design your parallel
program. In this section we will briefly look into some of the issues.

2.6.10.1 Parallel data structures

One of the issues in parallel program design is the use of Array-Of-Structures (AOS) vs Structure-Of-Arrays
(SOA). In normal program design you often define a structure

struct { int number; double xcoord,ycoord; } _Node;
struct { double xtrans,ytrans} _Vector;
typedef struct _Node* Node;
typedef struct _Vector* Vector;

and if you need a number of them you create an array of such structures.

Node *nodes = (Node*) malloc( n_nodes*sizeof(struct _Node) );

This is the AOS design.

Now suppose that you want to parallelize an operation

void shift(Node the_point,Vector by) {
the_point->xcoord += by->xtrans;
the_point->ycoord += by->ytrans;

}

which is done in a loop

for (i=0; i<n_nodes; i++) {
shift(nodes[i],shift_vector);

}

This code has the right structure for MPI programming (section 2.6.3.3), where every processor has its
own local array of nodes. This loop is also readily parallelizable with OpenMP (section 2.6.2).

However, in the 1980s codes had to be substantially rewritten as it was realized that the AOS design was
not good for vector computers. In that case you operands need to be contiguous, and so codes had to go
to a SOA design:

node_numbers = (int*) malloc( n_nodes*sizeof(int) );
node_xcoords = // et cetera
node_ycoords = // et cetera

and you would iterate

for (i=0; i<n_nodes; i++) {
node_xoords[i] += shift_vector->xtrans;
node_yoords[i] += shift_vector->ytrans;

}

Oh, did I just say that the original SOA design was best for distributed memory programming? That
meant that 10 years after the vector computer era everyone had to rewrite their codes again for clusters.
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Figure 2.19: The parallel matrix-vector product with a blockrow distribution.

And of course nowadays, with increasing SIMD width, we need to go part way back to the AOS design.
(There is some experimental software support for this transformation in the Intel ispc project, http:
//ispc.github.io/, which translates SPMD code to SIMD.)

2.6.10.2 Latency hiding

Communication between processors is typically slow, slower than data transfer from memory on a single
processor, and much slower than operating on data. For this reason, it is good to think about the relative
volumes of network traffic versus ‘useful’ operations when designing a parallel program. There has to be
enough work per processor to offset the communication.

Another way of coping with the relative slowness of communication is to arrange the program so that the
communication actually happens while some computation is going on. This is referred to as overlapping
computation with communication or latency hiding.

For example, consider the parallel execution of a matrix-vector product 𝑦 = 𝐴𝑥 (there will be further
discussion of this operation in section 6.2.1). Assume that the vectors are distributed, so each processor 𝑝
executes

∀𝑖∈𝐼𝑝 ∶ 𝑦𝑖 = ∑
𝑗

𝑎𝑖𝑗𝑥𝑗 .

Since 𝑥 is also distributed, we can write this as

∀𝑖∈𝐼𝑝 ∶ 𝑦𝑖 = ( ∑
𝑗 local

+ ∑
𝑗 not local

) 𝑎𝑖𝑗𝑥𝑗 .

This scheme is illustrated in figure 2.19. We can now proceed as follows:

• Start the transfer of non-local elements of 𝑥 ;
• Operate on the local elements of 𝑥 while data transfer is going on;
• Make sure that the transfers are finished;
• Operate on the non-local elements of 𝑥 .
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Exercise 2.31. How much can you gain from overlapping computation and communication?
Hint: consider the border cases where computation takes zero time and and there is only
communication, and the reverse. Now consider the general case.

Of course, this scenario presupposes that there is software and hardware support for this overlap. MPI
allows for this (see section 2.6.3.6), through so-called asynchronous communication or non-blocking com-
munication routines. This does not immediately imply that overlap will actually happen, since hardware
support is an entirely separate question.

2.7 Topologies
If a number of processors are working together on a single task, most likely they need to communicate
data. For this reason there needs to be a way for data to make it from any processor to any other. In this
section we will discuss some of the possible schemes to connect the processors in a parallel machine. Such
a scheme is called a (processor) topology.

In order to get an appreciation for the fact that there is a genuine problem here, consider two simple
schemes that do not ‘scale up’:

• Ethernet is a connection scheme where all machines on a network are on a single cable (see
remark below). If one machine puts a signal on the wire to send a message, and another also
wants to send a message, the latter will detect that the sole available communication channel
is occupied, and it will wait some time before retrying its send operation. Receiving data on
ethernet is simple: messages contain the address of the intended recipient, so a processor only
has to check whether the signal on the wire is intended for it.
The problems with this scheme should be clear. The capacity of the communication channel is
finite, so as more processors are connected to it, the capacity available to each will go down.
Because of the scheme for resolving conflicts, the average delay before a message can be started
will also increase.

• In a fully connected configuration, each processor has one wire for the communications with each
other processor. This scheme is perfect in the sense that messages can be sent in the minimum
amount of time, and two messages will never interfere with each other. The amount of data that
can be sent from one processor is no longer a decreasing function of the number of processors;
it is in fact an increasing function, and if the network controller can handle it, a processor can
even engage in multiple simultaneous communications.
The problem with this scheme is of course that the design of the network interface of a processor
is no longer fixed: as more processors are added to the parallel machine, the network interface
gets more connecting wires. The network controller similarly becomes more complicated, and
the cost of the machine increases faster than linearly in the number of processors.

Remark 9 The above description of Ethernet is of the original design. With the use of switches, especially in
an HPC context, this description does not really apply anymore.

It was initially thought that message collisions implied that ethernet would be inferior to other solutions
such as IBM’s token ring network, which explicitly prevents collisions. It takes fairly sophisticated statistical
analysis to prove that Ethernet works a lot better than was naively expected.
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In this section we will see a number of schemes that can be increased to large numbers of processors.

2.7.1 Some graph theory

The network that connects the processors in a parallel computer can conveniently be described with some
elementary graph theory concepts. We describe the parallel machine with a graph where each processor
is a node, and two nodes are connected if there is a direct connection between them. (We assume that
connections are symmetric, so that the network is an undirected graph.)

We can then analyze two important concepts of this graph.

First of all, the degree of a node in a graph is the number of other nodes it is connected to. With the nodes
representing processors, and the edges the wires, it is clear that a high degree is not just desirable for
efficiency of computing, but also costly from an engineering point of view. We assume that all processors
have the same degree.

Secondly, a message traveling from one processor to another, through one or more intermediate nodes,
will most likely incur some delay at each stage of the path between the nodes. For this reason, the diameter
of the graph is important. The diameter is defined as the maximum shortest distance, counting numbers
of links, between any two nodes:

𝑑(𝐺) = max𝑖,𝑗 |shortest path between 𝑖 and 𝑗|.

If 𝑑 is the diameter, and if sending a message over one wire takes unit time, this means a message will
always arrive in at most time 𝑑 .
Exercise 2.32. Find a relation between the number of processors, their degree, and the diam-

eter of the connectivity graph.

In addition to the question ‘how long will a message from processor A to processor B take’, we oftenworry
about conflicts between two simultaneous messages: is there a possibility that two messages, under way
at the same time, will need to use the same network link? In figure 2.20 we illustrate what happens if
every processor 𝑝𝑖 with 𝑖 < 𝑛/2 send a message to 𝑝𝑖+𝑛/2: there will be 𝑛/2messages trying to get through
the wire between 𝑝𝑛/2−1 and 𝑝𝑛/2. This sort of conflict is called congestion or contention. Clearly, the more

Figure 2.20: Contention for a network link due to simultaneous messages.

links a parallel computer has, the smaller the chance of congestion.
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A precise way to describe the likelihood of congestion, is to look at the bisection width. This is defined
as the minimum number of links that have to be removed to partition the processor graph into two un-
connected graphs. For instance, consider processors connected as a linear array, that is, processor 𝑃𝑖 is
connected to 𝑃𝑖−1 and 𝑃𝑖+1. In this case the bisection width is 1.

The bisection width 𝑤 describes how many messages can, guaranteed, be under way simultaneously in a
parallel computer. Proof: take 𝑤 sending and 𝑤 receiving processors. The 𝑤 paths thus defined are disjoint:
if they were not, we could separate the processors into two groups by removing only 𝑤 − 1 links.

In practice, of course, more than 𝑤 messages can be under way simultaneously. For instance, in a linear
array, which has 𝑤 = 1, 𝑃/2 messages can be sent and received simultaneously if all communication is
between neighbors, and if a processor can only send or receive, but not both, at any one time. If processors
can both send and receive simultaneously, 𝑃 messages can be under way in the network.

Bisection width also describes redundancy in a network: if one or more connections are malfunctioning,
can a message still find its way from sender to receiver?

While bisection width is a measure expressing a number of wires, in practice we care about the capacity
through those wires. The relevant concept here is bisection bandwidth: the bandwidth across the bisection
width, which is the product of the bisection width, and the capacity (in bits per second) of the wires.
Bisection bandwidth can be considered as a measure for the bandwidth that can be attained if an arbitrary
half of the processors communicates with the other half. Bisection bandwidth is a more realistic measure
than the aggregate bandwidthwhich is sometimes quoted andwhich is defined as the total data rate if every
processor is sending: the number of processors times the bandwidth of a connection times the number
of simultaneous sends a processor can perform. This can be quite a high number, and it is typically not
representative of the communication rate that is achieved in actual applications.

2.7.2 Busses

The first interconnect design we consider is to have all processors on the same memory bus. This design
connects all processors directly to the same memory pool, so it offers a UMA or SMP model.

The main disadvantage of using a bus is the limited scalability, since only one processor at a time can do
a memory access. To overcome this, we need to assume that processors are slower than memory, or that
the processors have cache or other local memory to operate out of. In the latter case, maintaining cache
coherence is easy with a bus by letting processors listen to all the memory traffic on the bus – a process
known as snooping.

2.7.3 Linear arrays and rings

A simple way to hook up multiple processors is to connect them in a linear array: every processor has a
number 𝑖, and processor 𝑃𝑖 is connected to 𝑃𝑖−1 and 𝑃𝑖+1. The first and last processor are possible excep-
tions: if they are connected to each other, we call the architecture a ring network.

This solution requires each processor to have two network connections, so the design is fairly simple.

Exercise 2.33. What is the bisection width of a linear array? Of a ring?
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Exercise 2.34. With the limited connections of a linear array, you may have to be clever about
how to program parallel algorithms. For instance, consider a ‘broadcast’ operation: pro-
cessor 0 has a data item that needs to be sent to every other processor.
We make the following simplifying assumptions:

• a processor can send any number of messages simultaneously,
• but a wire can can carry only one message at a time; however,
• communication between any two processors takes unit time, regardless of the
number of processors in between them.

In a fully connected network or a star network you can simply write
for 𝑖 = 1…𝑁 − 1:

send the message to processor 𝑖
With the assumption that a processor can send multiple messages, this means that the
operation is done in one step.
Now consider a linear array. Show that, even with this unlimited capacity for sending,
the above algorithm runs into trouble because of congestion.
Find a better way to organize the send operations. Hint: pretend that your processors
are connected as a binary tree. Assume that there are 𝑁 = 2𝑛 − 1 processors. Show that
the broadcast can be done in log𝑁 stages, and that processors only need to be able to
send a single message simultaneously.

This exercise is an example of embedding a ‘logical’ communication pattern in a physical one.

2.7.4 2D and 3D arrays

A popular design for parallel computers is to organize the processors in a two-dimensional or three-
dimensional Cartesian mesh. This means that every processor has a coordinate (𝑖, 𝑗) or (𝑖, 𝑗, 𝑘), and it is
connected to its neighbors in all coordinate directions. The processor design is still fairly simple: the
number of network connections (the degree of the connectivity graph) is twice the number of space
dimensions (2 or 3) of the network.

It is a fairly natural idea to have 2D or 3D networks, since the world around us is three-dimensional, and
computers are often used to model real-life phenomena. If we accept for now that the physical model
requires nearest neighbor type communications (which we will see is the case in section 4.2.3), then a
mesh computer is a natural candidate for running physics simulations.

Exercise 2.35. What is the diameter of a 3D cube of 𝑛 × 𝑛 × 𝑛 processors? What is the bisection
width? How does that change if you add wraparound torus connections?

Exercise 2.36. Your parallel computer has its processors organized in a 2D grid. The chip man-
ufacturer comes out with a new chip with same clock speed that is dual core instead
of single core, and that will fit in the existing sockets. Critique the following argument:
‘the amount of work per second that can be done (that does not involve communication)
doubles; since the network stays the same, the bisection bandwidth also stays the same,
so I can reasonably expect my new machine to become twice as fast’.

Grid-based designs often have so-called wrap-around or torus connections, which connect the left and
right sides of a 2D grid, as well as the top and bottom. This is illustrated in figure 2.21.
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Figure 2.21: A 2D grid with torus connections.

Some computer designs claim to be a grid of high dimensionality, for instance 5D, but not all dimensions
are equal here. For instance, a 3D grid where each node is a quad-socket quad-core can be considered as
a 5D grid. However, the last two dimensions are fully connected.

2.7.5 Hypercubes

Above we gave a hand-waving argument for the suitability of mesh-organized processors based on the
prevalence of nearest neighbor communications. However, sometimes sends and receives between ar-
bitrary processors occur. One example of this is the above-mentioned broadcast. For this reason, it is
desirable to have a network with a smaller diameter than a mesh. On the other hand we want to avoid
the complicated design of a fully connected network.

Figure 2.22: Numbering of the nodes of a hyper-
cube.

A good intermediate solution is the hypercube design.
An 𝑛-dimensional hypercube computer has 2𝑛 proces-
sors, with each processor connected to one other in
each dimension; see figure 2.23.

An easy way to describe this is to give each processor
an address consisting of 𝑑 bits: we give each node of a
hypercube a number that is the bit pattern describing
its location in the cube; see figure 2.22.

With this numbering scheme, a processor is then con-
nected to all others that have an address that differs
by exactly one bit. This means that, unlike in a grid, a
processor’s neighbors do not have numbers that differ
by 1 or √𝑃 , but by 1, 2, 4, 8, ….

The big advantages of a hypercube design are the small diameter and large capacity for traffic through
the network.

Exercise 2.37. What is the diameter of a hypercube? What is the bisection width?

One disadvantage is the fact that the processor design is dependent on the total machine size. In practice,
processors will be designed with a maximum number of possible connections, and someone buying a
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Figure 2.23: Hypercubes.

smaller machine then will be paying for unused capacity. Another disadvantage is the fact that extending
a given machine can only be done by doubling it: other sizes than 2𝑝 are not possible.

Exercise 2.38. Consider the parallel summing example of section 2.1, and give the execution
time of a parallel implementation on a hypercube. Show that the theoretical speedup
from the example is attained (up to a factor) for the implementation on a hypercube.

2.7.5.1 Embedding grids in a hypercube

Above we made the argument that mesh-connected processors are a logical choice for many applications
that model physical phenomena. Hypercubes do not look like a mesh, but they have enough connections
that they can simply pretend to be a mesh by ignoring certain connections.

Let’s say that we want the structure of a 1D array: we want processors with a numbering so that processor
𝑖 can directly send data to 𝑖 − 1 and 𝑖 + 1. We can not use the obvious numbering of nodes as in figure 2.22.
For instance, node 1 is directly connected to node 0, but has a distance of 2 to node 2. The right neighbor
of node 3 in a ring, node 4, even has the maximum distance of 3 in this hypercube. Clearly we need to
renumber the nodes in some way.

What we will show is that it’s possible to walk through a hypercube, touching every corner exactly once,
which is equivalent to embedding a 1D mesh in the hypercube.

Figure 2.25: Gray code numbering of the nodes of
a hypercube.

The basic concept here is a (binary reflected) Gray
code [84]. This is a way of ordering the binary num-
bers 0… 2𝑑−1 as 𝑔0, … 𝑔2𝑑−1 so that 𝑔𝑖 and 𝑔𝑖+1 differ in
only one bit. Clearly, the ordinary binary numbers do
not satisfy this: the binary representations for 1 and 2
already differ in two bits. Why do Gray codes help us?
Well, since 𝑔𝑖 and 𝑔𝑖+1 differ only in one bit, it means

142 Introduction to High Performance Scientific Computing



2.7. Topologies

1D Gray code : 0 1
2D Gray code :

1D code and reflection: 0 1 ⋮ 1 0
append 0 and 1 bit: 0 0 ⋮ 1 1

3D Gray code :
2D code and reflection: 0 1 1 0 ⋮ 0 1 1 0

0 0 1 1 ⋮ 1 1 0 0
append 0 and 1 bit: 0 0 0 0 ⋮ 1 1 1 1

Figure 2.24: Gray codes.

they are the numbers of nodes in the hypercube that
are directly connected.

Figure 2.24 illustrates how to construct a Gray code.
The procedure is recursive, and can be described in-
formally as ‘divide the cube into two subcubes, num-
ber the one subcube, cross over to the other subcube,
and number its nodes in the reverse order of the first
one’. The result for a 2D cube is in figure 2.25.

Since a Gray code offers us a way to embed a one-dimensional ‘mesh’ into a hypercube, we can now work
our way up.

Exercise 2.39. Show how a square mesh of 22𝑑 nodes can be embedded in a hypercube by
appending the bit patterns of the embeddings of two 2𝑑 node cubes. How would you
accommodate a mesh of 2𝑑1+𝑑2 nodes? A three-dimensional mesh of 2𝑑1+𝑑2+𝑑3 nodes?

2.7.6 Switched networks

Above, we briefly discussed fully connected processors. They are impractical if the connection is made
by making a large number of wires between all the processors. There is another possibility, however, by
connecting all the processors to a switch or switching network. Some popular network designs are the
crossbar , the butterfly exchange, and the fat tree.

Switching networks are made out of switching elements, each of which have a small number (up to about
a dozen) of inbound and outbound links. By hooking all processors up to some switching element, and
having multiple stages of switching, it then becomes possible to connect any two processors by a path
through the network.

2.7.6.1 Cross bar

Figure 2.26: A simple cross bar connect-
ing 6 inputs to 6 outputs.

The simplest switching network is a cross bar, an arrangement
of 𝑛 horizontal and vertical lines, with a switch element on
each intersection that determines whether the lines are con-
nected; see figure 2.26. If we designate the horizontal lines as
inputs the vertical as outputs, this is clearly a way of having
𝑛 inputs be mapped to 𝑛 outputs. Every combination of inputs
and outputs (sometimes called a ‘permutation’) is allowed.
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One advantage of this type of network is that no connection
blocks another. The main disadvantage is that the number of
switching elements is 𝑛2, a fast growing function of the num-
ber of processors 𝑛.

2.7.6.2 Butterfly exchange

Figure 2.27: Butterfly exchange networks for 2,4,8 processors, each with a local memory.

Butterfly exchange networks are built out of small switching
elements, and they have multiple stages: as the number of processors grows, the number of stages grows
with it. Figure 2.27 shows shows butterfly networks to connect 2,4, and 8 processors, each with a local
memory. (Alternatively, you could put all processors at one side of the network, and all memories at the
other.)

As you can see in figure 2.28, butterfly exchanges allow several processors to access memory simulta-
neously. Also, their access times are identical, so exchange networks are a way of implementing a UMA
architecture; see section 2.4.1. One computer that was based on a Butterfly exchange network was the
BBN Butterfly (http://en.wikipedia.org/wiki/BBN_Butterfly). In section 2.7.7.1 we will see how
these ideas are realized in a practical cluster.

Exercise 2.40. For both the simple cross bar and the butterfly exchange, the network needs to
be expanded as the number of processors grows. Give the number of wires (of some unit
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Figure 2.28: Two independent routes through a butterfly exchange network.

length) and the number of switching elements that is needed in both cases to connect 𝑛
processors and memories. What is the time that a data packet needs to go from memory
to processor, expressed in the unit time that it takes to traverse a unit length of wire and
the time to traverse a switching element?

Packet routing through a butterfly network is done based on considering the bits in the destination address.
On the 𝑖-th level the 𝑖-th digit is considered; if this is 1, the left exit of the switch is taken, if 0, the right
exit. This is illustrated in figure 2.29. If we attach the memories to the processors, as in figure 2.28, we
need only two bits (to the last switch) but a further three bits to describe the reverse route.

2.7.6.3 Fat-trees

If we were to connect switching nodes like a tree, there would be a big problem with congestion close
to the root since there are only two wires attached to the root note. Say we have a 𝑘-level tree, so there
are 2𝑘 leaf nodes. If all leaf nodes in the left subtree try to communicate with nodes in the right subtree,
we have 2𝑘−1 messages going through just one wire into the root, and similarly out through one wire. A
fat-tree is a tree network where each level has the same total bandwidth, so that this congestion problem
does not occur: the root will actually have 2𝑘−1 incoming and outgoing wires attached [85]. Figure 2.30
shows this structure on the left; on the right is shown a cabinet of the Stampede cluster, with a leaf switch
for top and bottom half of the cabinet.

The first successful computer architecture based on a fat-tree was the Connection Machines CM5.

In fat-trees, as in other switching networks, each message carries its own routing information. Since in a
fat-tree the choices are limited to going up a level, or switching to the other subtree at the current level,
a message needs to carry only as many bits routing information as there are levels, which is log2 𝑛 for 𝑛
processors.

Exercise 2.41. Show that the bisection width of a fat tree is 𝑃/2 where 𝑃 is the number of pro-
cessor leaf nodes. Hint: show that there is only one way of splitting a fat tree-connected
set of processors into two connected subsets.
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Figure 2.29: Routing through a three-stage butterfly exchange network.

The theoretical exposition of fat-trees in [135] shows that fat-trees are optimal in some sense: it can
deliver messages as fast (up to logarithmic factors) as any other network that takes the same amount of
space to build. The underlying assumption of this statement is that switches closer to the root have to
connect more wires, therefore take more components, and correspondingly are larger. This argument,
while theoretically interesting, is of no practical significance, as the physical size of the network hardly
plays a role in the biggest currently available computers that use fat-tree interconnect. For instance, in
the TACC Frontera cluster at The University of Texas at Austin, there are only 6 core switches (that is,
cabinents housing the top levels of the fat tree), connecting 91 processor cabinets.

A fat tree, as sketched above, would be costly to build, since for every next level a new, bigger, switchwould
have to be designed. In practice, therefore, a network with the characteristics of a fat-tree is constructed
from simple switching elements; see figure 2.31. This network is equivalent in its bandwidth and routing
possibilities to a fat-tree. Routing algorithms will be slightly more complicated: in a fat-tree, a data packet
can go up in only one way, but here a packet has to know to which of the two higher switches to route.

This type of switching network is one case of a Clos network [35].

2.7.6.4 Over-subscription and contention

In practice, fat-tree networks do not use 2-in-2-out elements, but switches that are more on the order of
20-in-20-out. This makes it possible for the number of levels in a network to be limited to 3 or 4. (The top
level switches are known as spine cards.)

An extra complication to the analysis of networks in this case is the possibility of oversubscription. The
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Figure 2.30: A fat tree with a three-level interconnect (left); the leaf switches in a cabinet of the Stampede
cluster (right).

Figure 2.31: A fat-tree built from simple switching elements.

ports in a network card are configurable as either in or out, and only the total is fixed. Thus, a 40-port
switch can be configured as 20-in and 20-out, or 21-in and 19-out, et cetera. Of course, if all 21 nodes
connected to the switch send at the same time, the 19 out ports will limit the bandwdidth.

There is a further problem. Let us considering building a small cluster with switches configured to have 𝑝
in-ports and 𝑤 out-ports, meaning we have 𝑝+𝑤-port switches. Figure 2.32 depicts two of such switching,
connecting a total of 2𝑝 nodes. If a node sends data through the switch, its choice of the 𝑤 available wires
is determined by the target node. This is known as output routing.

Clearly we can only expect 𝑤 nodes to be able to send with message collisions, since that is the number
of available wires between the switches. However, for many choices of 𝑤 targets there will be contention
for the wires regardless. This is an example of the birthday paradox.

Exercise 2.42. Consider the above architecture with 𝑝 nodes sending through 𝑤 wires between
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Figure 2.32: Port contention in an over-subscribed switch.

the switching. Code a simulation where 𝑤 ′ ≤ 𝑤 out of 𝑝 nodes send a message to
a randomly selected target node. What is the probability of collision as a function of
𝑤 ′, 𝑤 , 𝑝? Find a way to tabulate or plot data.
For bonus points, give a statistical analysis of the simple case 𝑤 ′ = 2.

2.7.7 Cluster networks

The above discussion was somewhat abstract, but in real-life clusters you can actually see the network
designs reflected. For instance, fat tree cluster networks will have a central cabinet corresponding to the top

Figure 2.33: Networks switches for the TACC Ranger and Stampede clusters.
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level in the tree. Figure 2.33 shows the switches of the TACC Ranger (no longer in service) and Stampede
clusters. In the second picture it can be seen that there are actually multiple redundant fat-tree networks.

On the other hand, clusters such as the IBM BlueGene, which is based on a torus-based cluster , will look
like a collection of identical cabinets, since each contains an identical part of the network; see figure 2.34.

Figure 2.34: A BlueGene computer.

2.7.7.1 Case study: Stampede

As an example of networking in practice, let’s consider the Stampede cluster at the Texas Advanced Com-
puting Center. This can be described as a multi-root multi-stage fat-tree.

• Each rack consists of 2 chassis, with 20 nodes each.
• Each chassis has a leaf switch that is an internal crossbar that gives perfect connectivity between
the nodes in a chassis;

• The leaf switch has 36 ports, with 20 connected to the nodes and 16 outbound. This oversubscrip-
tion implies that at most 16 nodes can have perfect bandwidth when communicating outside the
chassis.

• There are 8 central switches that function as 8 independent fat-tree root. Each chassis is con-
nected by two connections to a ‘leaf card’ in each of the central switches, taking up precisely the
16 outbound ports.

• Each central switch has 18 spine cards with 36 ports each, with each port connecting to a different
leaf card.

• Each central switch has 36 leaf cards with 18 ports to the leaf switches and 18 ports to the spine
cards. This means we can support 648 chassis, of which 640 are actually used.

One of the optimizations in the network is that two connections to the same leaf card communicate
without the latency of the higher tree levels. This means that 16 nodes in one chassis and 16 nodes in
another can have perfect connectivity.

However, with static routing, such as used in Infiniband, there is a fixed port associated with each destina-
tion. (This mapping of destination to port is in the routing tables in each switch.) Thus, for some subsets of
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16 nodes out 20 possible destination there will be perfect bandwidth, but other subsets will see the traffic
for two destinations go through the same port.

2.7.7.2 Case study: Cray Dragonfly networks

The Cray Dragonfly network is an interesting practical compromise. Above we argued that a fully con-
nected network would be too expensive to scale up. However, it is possible to have a fully connected set
of processors, if the number stays limited. The Dragonfly design uses small fully connected groups, and
then makes a fully connected graph of these groups.

This introduces an obvious asymmetry, since processors inside a group have a larger bandwidth then
between groups. However, thanks to dynamic routing messages can take a non-minimal path, being routed
through other groups. This can alleviate the contention problem.

2.7.8 Bandwidth and latency

The statement above that sending a message can be considered a unit time operation, is of course unre-
alistic. A large message will take longer to transmit than a short one. There are two concepts to arrive at
a more realistic description of the transmission process; we have already seen this in section 1.3.2 in the
context of transferring data between cache levels of a processor.

latency Setting up a communication between two processors takes an amount of time that is independent
of the message size. The time that this takes is known as the latency of a message. There are
various causes for this delay.

• The two processors engage in ‘hand-shaking’, to make sure that the recipient is ready, and
that appropriate buffer space is available for receiving the message.

• The message needs to be encoded for transmission by the sender, and decoded by the re-
ceiver.

• The actual transmission may take time: parallel computers are often big enough that, even
at lightspeed, the first byte of a message can take hundreds of cycles to traverse the distance
between two processors.

bandwidth After a transmission between two processors has been initiated, the main number of inter-
est is the number of bytes per second that can go through the channel. This is known as the
bandwidth. The bandwidth can usually be determined by the channel rate, the rate at which a
physical link can deliver bits, and the channel width, the number of physical wires in a link. The
channel width is typically a multiple of 16, usually 64 or 128. This is also expressed by saying
that a channel can send one or two 8-byte words simultaneously.

Bandwidth and latency are formalized in the expression

𝑇 (𝑛) = 𝛼 + 𝛽𝑛

for the transmission time of an 𝑛-byte message. Here, 𝛼 is the latency and 𝛽 is the time per byte, that is,
the inverse of bandwidth. Sometimes we consider data transfers that involve communication, for instance
in the case of a collective operation; see section 6.1. We then extend the transmission time formula to

𝑇 (𝑛) = 𝛼 + 𝛽𝑛 + 𝛾𝑛
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where 𝛾 is the time per operation, that is, the inverse of the computation rate.

It would also be possible to refine this formulas as

𝑇 (𝑛, 𝑝) = 𝛼 + 𝛽𝑛 + 𝛿𝑝

where 𝑝 is the number of network ‘hops’ that is traversed. However, on most networks the value of 𝛿
is far lower than of 𝛼 , so we will ignore it here. Also, in fat-tree networks (section 2.7.6.3) the number
of hops is of the order of log 𝑃 , where 𝑃 is the total number of processors, so it can never be very large
anyway.

2.7.9 Locality in parallel computing

In section 1.7.2 you found a discussion of locality concepts in single-processor computing. The concept
of locality in parallel computing comprises all this and a few levels more.

Between cores; private cache Cores on modern processors have private coherent caches. This means
that it looks like you don’t have to worry about locality, since data is accessible no matter what cache it
is in. However, maintaining coherence costs bandwidth, so it is best to keep access localized.

Between cores; shared cache The cache that is shared between cores is one place where you don’t have
to worry about locality: this is memory that is truly symmetric between the processing cores.

Between sockets The sockets on a node (or motherboard) appear to the programmer to have shared
memory, but this is reallyNUMA access (section 2.4.2) since thememory is associatedwith specific sockets.

Through the network structure Some networks have clear locality effects. You saw a simple example
in section 2.7.1, and in general it is clear that any grid-type network will favor communication between
‘nearby’ processors. Networks based on fat-trees seem free of such contention issues, but the levels induce
a different form of locality. One level higher than the locality on a node, small groups of nodes are often
connected by a leaf switch, which prevents data from going to the central switch.

2.8 Multi-threaded architectures

The architecture of modern CPUs is largely dictated by the fact that getting data from memory is much
slower than processing it. Hence, a hierarchy of ever faster and smaller memories tries to keep data as
close to the processing unit as possible, mitigating the long latency and small bandwidth of main memory.
The ILP in the processing unit also helps to hide the latency andmore fully utilize the available bandwidth.

However, finding ILP is a job for the compiler and there is a limit to what it can practically find. On
the other hand, scientific codes are often very data parallel in a sense that is obvious to the programmer,
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though not necessarily to the compiler. Would it be possible for the programmer to specify this parallelism
explicitly and for the processor to use it?

In section 2.3.1 you saw that SIMD architectures can be programmed in an explicitly data parallel way.
What if we have a great deal of data parallelism but not that many processing units? In that case, we could
turn the parallel instruction streams into threads (see section 2.6.1) and have multiple threads be executed
on each processing unit. Whenever a thread would stall because of an outstanding memory request, the
processor could switch to another thread for which all the necessary inputs are available. This is called
multi-threading. While it sounds like a way of preventing the processor from waiting for memory, it can
also be viewed as a way of keeping memory maximally occupied.

Exercise 2.43. If you consider the long latency and limited bandwidth of memory as two sep-
arate problems, does multi-threading address them both?

The problem here is that most CPUs are not good at switching quickly between threads. A context switch
(switching between one thread and another) takes a large number of cycles, comparable to a wait for data
from main memory. In a so-called Multi-Threaded Architecture (MTA) a context-switch is very efficient,
sometimes as little as a single cycle, which makes it possible for one processor to work on many threads
simultaneously.

The multi-threaded concept was explored in the Tera Computer MTA machine, which evolved into the
current Cray XMT 8.

The other example of an MTA is the GPU, where the processors work as SIMD units, while being them-
selves multi-threaded; see section 2.9.3.

2.9 Co-processors, including GPUs

Current CPUs are built to be moderately efficient at just about any conceivable computation. This implies
that by restricting the functionality of a processor it may be possible to raise its efficiency, or lower its
power consumption at similar efficiency. Thus, the idea of incorporating a co-processor attached to the host
process has been explored many times. For instance, Intel’s 8086 chip, which powered the first generation
of IBM PCs, could have a numerical co-processor, the Intel 8087 co-processor , added to it. This co-processor
was very efficient at transcendental functions and it also incorporated SIMD technology. Using separate
functionality for graphics has also been popular, leading to the SSE instructions for the x86 processor, and
separate GPU units to be attached to the PCI-X bus.

Further examples are the use of co-processors for Digital Signal Processing (DSP) instructions, as well as
FPGA boards which can be reconfigured to accommodate specific needs. Early array processors such as
the ICL DAP were also co-processors.

In this section we look briefly at some modern incarnations of this idea, in particular GPUs.

8. Tera Computer renamed itself Cray Inc. after acquiring Cray Research from SGI .
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2.9.1 A little history

Co-processors can be programmed in two different ways: sometimes it is seamlessly integrated, and cer-
tain instructions are automatically executed there, rather than on the ‘host’ processor. On the other hand,
it is also possible that co-processor functions need to be explicitly invoked, and it may even be possible
to overlap co-processor functions with host functions. The latter case may sound attractive from an effi-
ciency point of view, but it raises a serious problem of programmability. The programmer now needs to
identify explicitly two streams of work: one for the host processor and one for the co-processor.

Some notable parallel machines with co-processors are:

• The Intel Paragon (1993) had two processors per node, one for communication and the other for
computation. These were in fact identical, the Intel i860Intel i860 processor. In a later revision, it
became possible to pass data and function pointers to the communication processors.

• The IBM Roadrunner at Los Alamos was the first machine to reach a PetaFlop. (The Grape com-
puter had reached this point earlier, but that was a special purpose machine for molecular dy-
namics calculations.) It achieved this speed through the use of Cell co-processors. Incidentally,
the Cell processor is in essence the engine of the Sony Playstation3, showing again the commodi-
tization of supercomputers (section 2.3.3).

• The Chinese Tianhe-1A topped the Top 500 list in 2010, reaching about 2.5 PetaFlops through the
use of NVidia GPUs.

• The Tianhe-2 and the TACC Stampede cluster use Intel Xeon Phi co-processors.

The Roadrunner and Tianhe-1A are examples of co-processors that are very powerful, and that need to
be explicitly programmed independently of the host CPU. For instance, code running on the GPUs of the
Tianhe-1A is programmed in CUDA and compiled separately.

In both cases the programmability problem is further exacerbated by the fact that the co-processor can
not directly talk to the network. To send data from one co-processor to another it has to be passed to a
host processor, from there through the network to the other host processor, and only then moved to the
target co-processor.

2.9.2 Bottlenecks

Co-processors often have their own memory, and the Intel Xeon Phi can run programs independently, but
more often there is the question of how to access the memory of the host processor. A popular solution is
to connect the co-processor through a PCI bus. Accessing host memory this way is slower than the direct
connection that the host processor has. For instance, the Intel Xeon Phi has a bandwidth of 512-bit wide at
5.5GT per second (we will get to that ‘GT’ in a second), while its connection to host memory is 5.0GT/s,
but only 16-bit wide.

GTmeasure We are used to seeing bandwidth measured in gigabits per second. For a PCI bus one often
see the GT measure. This stands for giga-transfer, and it measures how fast the bus can change state
between zero and one. Normally, every state transition would correspond to a bit, except that the bus has
to provide its own clock information, and if you would send a stream of identical bits the clock would get
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confused. Therefore, every 8 bits are encoded in 10 bits, to prevent such streams. However, this means
that the effective bandwidth is lower than the theoretical number, by a factor of 4/5 in this case.

And since manufacturers like to give a positive spin on things, they report the higher number.

2.9.3 GPU computing

A Graphics Processing Unit (GPU) (or sometimes General Purpose Graphics Processing Unit (GPGPU)) is
a special purpose processor, designed for fast graphics processing. However, since the operations done
for graphics are a form of arithmetic, GPUs have gradually evolved a design that is also useful for non-
graphics computing. The general design of a GPU is motivated by the ‘graphics pipeline’: identical oper-
ations are performed on many data elements in a form of data parallelism (section 2.5.1), and a number
of such blocks of data parallelism can be active at the same time.

Figure 2.35: Memory structure of a GPU.

The basic limitations that hold for a CPU
hold for a GPU: accesses to memory incur
a long latency. The solution to this problem
in a CPU is to introduce levels of cache; in
the case of a GPU a different approach is
taken (see also section 2.8). GPUs are con-
cerned with throughput computing, deliver-
ing large amounts of data with high average
rates, rather than any single result as quickly
as possible. This is made possible by support-
ing many threads (section 2.6.1) and having
very fast switching between them. While one
thread is waiting for data from memory, an-
other thread that already has its data can pro-
ceed with its computations.

2.9.3.1 SIMD-type programming with kernels

Present day GPUs9 have an architecture
that combines SIMD and SPMD parallelism.
Threads are not completely independent, but
are ordered in thread blocks, where all threads
in the block execute the same instruction,
making the execution SIMD. It is also possible to schedule the same instruction stream (a ‘kernel’ in Cuda
terminology) on more than one thread block. In this case, thread blocks can be out of sync, much like
processes in an SPMD context. However, since we are dealing with threads here, rather than processes,
the term Single Instruction Multiple Thread (SIMT) is used.

This software design is apparent in the hardware; for instance, an NVidia GPU has 16–30 Streaming
Multiprocessors (SMs), and a SMs consists of 8 Streaming Processors (SPs), which correspond to processor

9. The most popular GPUs today are made by NVidia, and are programmed in CUDA, an extension of the C language.
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cores; see figure 2.36. The SPs act in true SIMD fashion. The number of cores in a GPU is typically larger
than in traditional multi-core processors, but the cores are more limited. Hence, the termmanycore is used
here.

Figure 2.36: Diagram of a GPU.

The SIMD, or data parallel, nature of GPUs becomes apparent in the way CUDA starts processes. A kernel,
that is, a function that will be executed on the GPU, is started on 𝑚𝑛 cores by:

KernelProc<< m,n >>(args)

The collection of 𝑚𝑛 cores executing the kernel is known as a grid, and it is structured as 𝑚 thread blocks
of 𝑛 threads each. A thread block can have up to 512 threads.

Recall that threads share an address space (see section 2.6.1), so they need a way to identify what part of
the data each thread will operate on. For this, the blocks in a thread are numbered with 𝑥, 𝑦 coordinates,
and the threads in a block are numbered with 𝑥, 𝑦 , 𝑧 coordinates. Each thread knows its coordinates in the
block, and its block’s coordinates in the grid.

We illustrate this with a vector addition example:

// Each thread performs one addition
__global__ void vecAdd(float* A, float* B, float* C)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

}
int main()
{
// Run grid of N/256 blocks of 256 threads each

Victor Eijkhout 155



2. Parallel Computing

vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
}

This shows the SIMD nature of GPUs: every thread executes the same scalar program, just on different
data.

Figure 2.37: Thread indexing in CUDA.

Threads in a thread block are truly data parallel: if there is a conditional that makes some threads take
the true branch and others the false branch, then one branch will be executed first, with all threads in the
other branch stopped. Subsequently, and not simultaneously, the threads on the other branch will then
execute their code. This may induce a severe performance penalty.

GPUs rely on a large amount of data parallelism and the ability to do a fast context switch. This means that
they will thrive in graphics and scientific applications, where there is lots of data parallelism. However
they are unlikely to do well on ‘business applications’ and operating systems, where the parallelism is of
the Instruction Level Parallelism (ILP) type, which is usually limited.

2.9.3.2 GPUs versus CPUs

These are some of the differences between GPUs and regular CPUs:

• First of all, as of this writing (late 2010), GPUs are attached processors, for instance over a PCI-X
bus, so any data they operate on has to be transferred from the CPU. Since thememory bandwidth
of this transfer is low, at least 10 times lower than the memory bandwidth in the GPU, sufficient
work has to be done on the GPU to overcome this overhead.

• Since GPUs are graphics processors, they put an emphasis on single precision floating point arith-
metic. To accommodate the scientific computing community, double precision support is increas-
ing, but double precision speed is typically half the single precision flop rate. This discrepancy is
likely to be addressed in future generations.

• A CPU is optimized to handle a single stream of instructions that can be very heterogeneous in
character; a GPU is made explicitly for data parallelism, and will perform badly on traditional
codes.
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• A CPU is made to handle one thread, or at best a small number of threads. A GPU needs a large
number of threads, far larger than the number of computational cores, to perform efficiently.

2.9.3.3 Expected benefit from GPUs

GPUs have rapidly gained a reputation for achieving high performance, highly cost effectively. Stories
abound of codes that were ported with minimal effort to CUDA, with a resulting speedup of sometimes
400 times. Is the GPU really such a miracle machine? Were the original codes badly programmed? Why
don’t we use GPUs for everything if they are so great?

The truth has several aspects.

First of all, a GPU is not as general-purpose as a regular CPU: GPUs are very good at doing data parallel
computing, and CUDA is good at expressing this fine-grained parallelism elegantly. In other words, GPUs
are suitable for a certain type of computation, and will be a poor fit for many others.

Conversely, a regular CPU is not necessarily good at data parallelism. Unless the code is very carefully
written, performance can degrade from optimal by approximately the following factors:

• Unless directives or explicit parallel constructs are used, compiled code will only use 1 out of the
available cores, say 4.

• If instructions are not pipelined, the latency because of the floating point pipeline adds another
factor of 4.

• If the core has independent add and multiply pipelines, another factor of 2 will be lost if they are
not both used simultaneously.

• Failure to use SIMD registers can add more to the slowdown with respect to peak performance.

Writing the optimal CPU implementation of a computational kernel often requires writing in assembler,
whereas straightforward CUDA code will achieve high performance with comparatively little effort, pro-
vided of course the computation has enough data parallelism.

2.9.4 Intel Xeon Phi

IntelXeon Phi (also known by its architecture design asMany Integrated Cores (MIC)) is a design expressly
designed for numerical computing. The initial design, the Knights Corner was a co-processor, though the
second iteration, the Knights Landing was self-hosted.

As a co-processor, the Xeon Phi has both differences and similarities with GPUs.

• Both are connected through a PCI-X bus, which means that operations on the device have a
considerable latency in starting up.

• The Xeon Phi has general purpose cores, so that it can run whole programs; GPUs has that only
to a limited extent (see section 2.9.3.1).

• The Xeon Phi accepts ordinary C code.
• Both architectures require a large amount of SIMD-style parallelism, in the case of the Xeon Phi
because of the 8-word wide AVX instructions.

• Both devices work, or can work, through offloading from a host program. In the case of the Xeon
Phi this can happen with OpenMP constructs and MKL calls.
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2.10 Load balancing

In much of this chapter, we assumed that a problem could be perfectly divided over processors, that is, a
processor would always be performing useful work, and only be idle because of latency in communication.
In practice, however, a processor may be idle because it is waiting for amessage, and the sending processor
has not even reached the send instruction in its code. Such a situation, where one processor is working
and another is idle, is described as load unbalance: there is no intrinsic reason for the one processor to be
idle, and it could have been working if we had distributed the work load differently.

There is an asymmetry between processors having too much work and having not enough work: it is
better to have one processor that finishes a task early, than having one that is overloaded so that all
others wait for it.

Exercise 2.44. Make this notion precise. Suppose a parallel task takes time 1 on all processors
but one.

• Let 0 < 𝛼 < 1 and let one processor take time 1 + 𝛼 . What is the speedup and effi-
ciency as function of the number of processors? Consider this both in the Amdahl
and Gustafsson sense (section 2.2.3).

• Answer the same questions if one processor takes time 1 − 𝛼 .
Load balancing is often expensive since it requires moving relatively large amounts of data. For instance,
section 6.5 has an analysis showing that the data exchanges during a sparse matrix-vector product is of a
lower order than what is stored on the processor. However, we will not go into the actual cost of moving:
our main concerns here are to balance the workload, and to preserve any locality in the original load
distribution.

2.10.1 Load balancing versus data distribution

There is a duality between work and data: in many applications the distribution of data implies a distribu-
tion of work and the other way around. If an application updates a large array, each element of the array
typically ‘lives’ on a uniquely determined processor, and that processor takes care of all the updates to
that element. This strategy is known as owner computes.

Thus, there is a direct relation between data and work, and, correspondingly, data distribution and load
balancing go hand in hand. For instance, in section 6.2 we will talk about how data distribution influences
the efficiency, but this immediately translates to concerns about load distribution:

• Load needs to be evenly distributed. This can often be done by evenly distributing the data, but
sometimes this relation is not linear.

• Tasks need to be placed to minimize the amount of traffic between them. In the matrix-vector
multiplication case this means that a two-dimensional distribution is to be preferred over a one-
dimensional one; the discussion about space-filling curves is similarly motivated.

As a simple example of how the data distribution influences the load balance, consider a linear arraywhere
each point undergoes the same computation, and each computation takes the same amount of time. If the
length of the array, 𝑁 , is perfectly divisible by the number of processors, 𝑝, the work is perfectly evenly
distributed. If the data is not evenly divisible, we start by assigning ⌊𝑁/𝑝⌋ points to each processor, and
the remaining 𝑁 − 𝑝⌊𝑁/𝑝⌋ points to the last processors.
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Exercise 2.45. In the worst case, how unbalanced does that make the processors’ work? Com-
pare this scheme to the option of assigning ⌈𝑁/𝑝⌉ points to all processors except one,
which gets fewer; see the exercise above.

It is better to spread the surplus 𝑟 = 𝑁 −𝑝⌊𝑁/𝑝⌋ over 𝑟 processors than one. This could be done by giving
one extra data point to the first or last 𝑟 processors. This can be achieved by assigning to process 𝑝 the
range

[𝑝 × ⌊(𝑁 + 𝑝 − 1)/𝑝⌋, (𝑝 + 1) × ⌊(𝑁 + 𝑝 − 1)/𝑝⌋)
While this scheme is decently balanced, computing for instance to what processor a given point belongs
is tricky. The following scheme makes such computations easier: let 𝑓 (𝑖) = ⌊𝑖𝑁/𝑝⌋, then processor 𝑖 gets
points 𝑓 (𝑖) up to 𝑓 (𝑖 + 1).
Exercise 2.46. Show that ⌊𝑁/𝑝⌋ ≤ 𝑓 (𝑖 + 1) − 𝑓 (𝑖) ≤ ⌈𝑁/𝑝⌉.
Under this scheme, the processor that owns index 𝑖 is ⌊(𝑝(𝑖 + 1) − 1)/𝑁 ⌋.

2.10.2 Load scheduling

In some circumstances, the computational load can be freely assigned to processors, for instance in the
context of shared memory where all processors have access to all the data. In that case we can consider
the difference between static scheduling using a pre-determined assignment of work to processors, or
dynamic scheduling where the assignment is determined during executions.

As an illustration of the merits of dynamic scheduling consider scheduling 8 tasks of decreasing runtime
on 4 threads (figure 2.38). In static scheduling, the first thread gets tasks 1 and 4, the second 2 and 5, et

Figure 2.38: Static or round-robin (left) vs dynamic (right) thread scheduling; the task numbers are indi-
cated.

cetera. In dynamic scheduling, any thread that finishes its task gets the next task. This clearly gives a
better running time in this particular example. On the other hand, dynamic scheduling is likely to have a
higher overhead.

2.10.3 Load balancing of independent tasks

In other cases, work load is not directly determined by data. This can happen if there is a pool of work to
be done, and the processing time for each work item is not easily computed from its description. In such
cases we may want some flexibility in assigning work to processes.
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Let us first consider the case of a job that can be partitioned into independent tasks that do not commu-
nicate. An example would be computing the pixels of a Mandelbrot set picture, where each pixel is set
according to a mathematical function that does not depend on surrounding pixels. If we could predict the
time it would take to draw an arbitrary part of the picture, we could make a perfect division of the work
and assign it to the processors. This is known as static load balancing.

More realistically, we can not predict the running time of a part of the job perfectly, and we use an
overdecomposition of the work: we divide the work in more tasks than there are processors. These tasks
are then assigned to a work pool, and processors take the next job from the pool whenever they finish a
job. This is known as dynamic load balancing. Many graph and combinatorial problems can be approached
this way; see section 2.5.3. For task assignment in a multicore context, see section 6.12.

There are results that show that randomized assignment of tasks to processors is statistically close to opti-
mal [117], but this ignores the aspect that in scientific computing tasks typically communicate frequently.
Exercise 2.47. Suppose you have tasks {𝑇𝑖}𝑖=1,…,𝑁 with running times 𝑡𝑖, and an unlimited num-

ber of processors. Look up Brent’s theorem in section 2.2.4, and derive from it that the
fastest execution scheme for the tasks can be characterized as follows: there is one pro-
cessor that only executes the task with maximal 𝑡𝑖 value. (This exercise was inspired
by [161].)

2.10.4 Load balancing as graph problem

Next let us consider a parallel job where the parts do communicate. In this case we need to balance both
the scalar workload and the communication.

A parallel computation can be formulated as a graph (see Appendix 19 for an introduction to graph theory)
where the processors are the vertices, and there is an edge between two vertices if their processors need
to communicate at some point. Such a graph is often derived from an underlying graph of the problem
being solved. As an example consider the matrix-vector product 𝑦 = 𝐴𝑥 where 𝐴 is a sparse matrix, and
look in detail at the processor that is computing 𝑦𝑖 for some 𝑖. The statement 𝑦𝑖 ← 𝑦𝑖 + 𝐴𝑖𝑗𝑥𝑗 implies that
this processor will need the value 𝑥𝑗 , so, if this variable is on a different processor, it needs to be sent over.

We can formalize this: Let the vectors 𝑥 and 𝑦 be distributed disjointly over the processors, and define
uniquely 𝑃(𝑖) as the processor that owns index 𝑖. Then there is an edge (𝑃, 𝑄) if there is a nonzero el-
ement 𝑎𝑖𝑗 with 𝑃 = 𝑃(𝑖) and 𝑄 = 𝑃(𝑗). This graph is undirected in the case of a structurally symmetric
matrix, that is 𝑎𝑖𝑗 ≠ 0 ⇔ 𝑎𝑗𝑖 ≠ 0.
The distribution of indices over the processors now gives us vertex and edge weights: a processor has a
vertex weight that is the number of indices owned by it; an edge (𝑃, 𝑄) has a weight that is the number
of vector components that need to be sent from 𝑄 to 𝑃 , as described above.

The load balancing problem can now be formulated as follows:
Find a partitioning ℙ = ∪𝑖ℙ𝑖, such the variation in vertex weights is minimal, and simul-
taneously the edge weights are as low as possible.

Minimizing the variety in vertex weights implies that all processor have approximately the same amount
of work. Keeping the edge weights low means that the amount of communication is low. These two
objectives need not be satisfiable at the same time: some trade-off is likely.
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Exercise 2.48. Consider the limit case where processors are infinitely fast and bandwidth be-
tween processors is also unlimited. What is the sole remaining factor determining the
runtime? What graph problem do you need to solve now to find the optimal load bal-
ance? What property of a sparse matrix gives the worst case behavior?

An interesting approach to load balancing comes from spectral graph theory (section 19.6): if 𝐴𝐺 is the
adjacency matrix of an undirected graph and 𝐷𝐺 − 𝐴𝐺 the graph Laplacian, then the eigenvector 𝑢1 to
the smallest eigenvalue zero is positive, and the eigenvector 𝑢2 to the next eigenvalue is orthogonal to
it. Therefore 𝑢2 has to have elements of alternating sign; further analysis shows that the elements with
positive sign are connected, as are the negative ones. This leads to a natural bisection of the graph.

2.10.5 Load redistributing

In certain applications an initial load distribution is clear, but later adjustments are needed. A typical
example is in Finite Element Method (FEM) codes, where load can be distributed by a partitioning of
the physical domain; see section 6.5.3. If later the discretization of the domain changes, the load has
to be rebalanced or redistributed. In the next subsections we will see techniques for load balancing and
rebalancing aimed at preserving locality.

2.10.5.1 Diffusion load balancing

In many practical situations we can associate a processor graph with our problem: there is a vertex be-
tween any pair of processes that directly interacts through point-to-point communication. Thus, it seems
a natural thought to use this graph in load balancing, and only move load from a processor to its neighbors
in the graph.

This is the idea by diffusion load balancing [38, 109].

While the graph is not intrinsically directed, for load balancing we put arbitrary directions on the edges.
Load balancing is then described as follows.

Let ℓ𝑖 be the load on process 𝑖, and 𝜏 (𝑗)𝑖 the transfer of load on an edge 𝑗 → 𝑖. Then

ℓ𝑖 ← ℓ𝑖 + ∑
𝑗→𝑖

𝜏 (𝑗)𝑖 − ∑
𝑖→𝑗

𝜏 (𝑖)𝑗

Although we just used a 𝑖, 𝑗 number of edges, in practice we put a linear numbering the edges. We then
get a system

𝐴𝑇 = ̄𝐿

where

• 𝐴 is a matrix of size |𝑁 |×|𝐸| describing what edges connect in/out of a node, with elements values
equal to ±1 depending;

• 𝑇 is the vector of transfers, of size |𝐸|; and
• ̄𝐿 is the load deviation vector, indicating for each node how far over/under the average load they
are.
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In the case of a linear processor array this matrix is under-determined, with fewer edges than processors,
but in most cases the system will be over-determined, with more edges than processes. Consequently, we
solve

𝑇 = (𝐴𝑡𝐴)−1𝐴𝑡 ̄𝐿 or𝑇 = 𝐴𝑡(𝐴𝐴𝑡)−1 ̄𝐿.
Since 𝐴𝑡𝐴 and 𝐴𝐴𝑡 are positive indefinite, we could solve the approximately by relaxation, needing only
local knowledge. Of course, such relaxation has slow convergence, and a global method, such as Conjugate
Gradients (CG), would be faster [109].

2.10.5.2 Load balancing with space-filling curves

In the previous sections we considered two aspects of load balancing: making sure all processors have an
approximately equal amount of work, and letting the distribution reflect the structure of the problem so
that communication is kept within reason. We can phrase the second point trying to preserve the locality
of the problem when distributed over a parallel machine: points in space that are close together are likely
to interact, so they should be on the same processor, or at least one not too far away.

Striving to preserve locality is not obviously the right strategy. In BSP (see section 2.6.8) a statistical argu-
ment is made that random placement will give a good load balance as well as balance of communication.
Exercise 2.49. Consider the assignment of processes to processors, where the structure of the

problem is such that each processes only communicates with its nearest neighbors, and
let processors be ordered in a two-dimensional grid. If we do the obvious assignment of
the process grid to the processor grid, there will be no contention. Now write a program
that assigns processes to random processors, and evaluate how much contention there
will be.

In the previous section you saw how graph partitioning techniques can help with the second point of
preserving problem locality. In this section you will see a different technique that is attractive both for
the initial load assignment and for subsequent load rebalancing. In the latter case, a processor’s work may
increase or decrease, necessitating moving some of the load to a different processor.

For instance, some problems are adaptively refined10 . This is illustrated in figure 2.39. If we keep track
of these refinement levels, the problem gets a tree structure, where the leaves contain all the work. Load
balancing becomes a matter of partitioning the leaves of the tree over the processors; figure 2.40. Now we
observe that the problem has a certain locality: the subtrees of any non-leaf node are physically close, so
there will probably be communication between them.

• Likely there will be more subdomains than processors; to minimize communication between pro-
cessors, we want each processor to contain a simply connected group of subdomains. Moreover,
we want each processor to cover a part of the domain that is ‘compact’ in the sense that it has
low aspect ratio, and low surface-to-volume ratio.

• When a subdomain gets further subdivided, part of the load of its processor may need to be
shifted to another processor. This process of load redistributing should preserve locality.

To fulfill these requirements we use Space-Filling Curves (SFCs). A Space-Filling Curve (SFC) for the load
balanced tree is shown in figure 2.41. We will not give a formal discussion of SFCs; instead we will let

10. For a detailed discussion, see [28].
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Figure 2.39: Adaptive refinement of a domain in subsequent levels.

Figure 2.40: Load distribution of an adaptively refined domain.

figure 2.42 stand for a definition: a SFC is a recursively defined curve that touches each subdomain once11

. The SFC has the property that domain elements that are close together physically will be close together
on the curve, so if we map the SFC to a linear ordering of processors we will preserve the locality of the
problem.

More importantly, if the domain is refined by another level, we can refine the curve accordingly. Load can
then be redistributed to neighboring processors on the curve, and we will still have locality preserved.

(The use of Space-Filling Curves (SFCs) is N-body problems was discussed in [189] and [177].)

11. Space-Filling Curves (SFCs) were introduced by Peano as a mathematical device for constructing a continuous surjective
function from the line segment [0, 1] to a higher dimensional cube [0, 1]𝑑 . This upset the intuitive notion of dimension that ‘you
can not stretch and fold a line segment to fill up the square’. A proper treatment of the concept of dimension was later given by
Brouwer.
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Figure 2.41: A space filling curve for the load balanced tree.

Figure 2.42: Space filling curves, regularly and irregularly refined.

2.11 Remaining topics

2.11.1 Distributed computing, grid computing, cloud computing

In this section we will take a short look at terms such as cloud computing, and an earlier term distributed
computing. These are concepts that have a relation to parallel computing in the scientific sense, but that
differ in certain fundamental ways.

Distributed computing can be traced back as coming from large database servers, such as airline reser-
vations systems, which had to be accessed by many travel agents simultaneously. For a large enough
volume of database accesses a single server will not suffice, so the mechanism of remote procedure call
was invented, where the central server would call code (the procedure in question) on a different (remote)
machine. The remote call could involve transfer of data, the data could be already on the remote machine,
or there would be some mechanism that data on the two machines would stay synchronized. This gave
rise to the Storage Area Network (SAN). A generation later than distributed database systems, web servers
had to deal with the same problem of many simultaneous accesses to what had to act like a single server.

We already see one big difference between distributed computing and high performance parallel com-
puting. Scientific computing needs parallelism because a single simulation becomes too big or slow for
one machine; the business applications sketched above deal with many users executing small programs
(that is, database or web queries) against a large data set. For scientific needs, the processors of a parallel
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machine (the nodes in a cluster) have to have a very fast connection to each other; for business needs no
such network is needed, as long as the central dataset stays coherent.

Both in HPC and in business computing, the server has to stay available and operative, but in distributed
computing there is considerably more liberty in how to realize this. For a user connecting to a service
such as a database, it does not matter what actual server executes their request. Therefore, distributed
computing can make use of virtualization: a virtual server can be spawned off on any piece of hardware.

An analogy can be made between remote servers, which supply computing power wherever it is needed,
and the electric grid, which supplies electric power wherever it is needed. This has led to grid computing
or utility computing, with the Teragrid, owned by the US National Science Foundation, as an example. Grid
computing was originally intended as a way of hooking up computers connected by a Local Area Network
(LAN) or Wide Area Network (WAN), often the Internet. The machines could be parallel themselves, and
were often owned by different institutions.More recently, it has been viewed as away of sharing resources,
both datasets, software resources, and scientific instruments, over the network.

The notion of utility computing as away ofmaking services available, which you recognize from the above
description of distributed computing, went mainstream with Google’s search engine, which indexes the
whole of the Internet. Another example is the GPS capability of Android mobile phones, which combines
GIS, GPS, and mashup data. The computing model by which Google’s gathers and processes data has
been formalized in MapReduce [41]. It combines a data parallel aspect (the ‘map’ part) and a central
accumulation part (‘reduce’). Neither involves the tightly coupled neighbor-to-neighbor communication
that is common in scientific computing. An open source framework for MapReduce computing exists in
Hadoop [93]. Amazon offers a commercial Hadoop service.

The concept of having a remote computer serve user needs is attractive even if no large datasets are
involved, since it absolves the user from the need of maintaining software on their local machine. Thus,
Google Docs offers various ‘office’ applications without the user actually installing any software. This
idea is sometimes called Software As a Service (SAS), where the user connects to an ‘application server’,
and accesses it through a client such as a web browser. In the case of Google Docs, there is no longer a
large central dataset, but each user interacts with their own data, maintained on Google’s servers. This
of course has the large advantage that the data is available from anywhere the user has access to a web
browser.

The SAS concept has several connections to earlier technologies. For instance, after the mainframe and
workstation eras, the so-called thin client ideawas briefly popular. Here, the userwould have aworkstation
rather than a terminal, yet work on data stored on a central server. One product along these lines was
Sun’s Sun Ray (circa 1999) where users relied on a smartcard to establish their local environment on an
arbitrary, otherwise stateless, workstation.

2.11.1.1 Usage scenarios

The model where services are available on demand is attractive for businesses, which increasingly are
using cloud services. The advantages are that it requires no initial monetary and time investment, and
that no decisions about type and size of equipment have to be made. At the moment, cloud services
are mostly focused on databases and office applications, but scientific clouds with a high performance
interconnect are under development.
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The following is a broad classification of usage scenarios of cloud resources12 .

• Scaling. Here the cloud resources are used as a platform that can be expanded based on user
demand. This can be considered Platform-as-a-Service (PAS): the cloud provides software and
development platforms, eliminating the administration and maintenance for the user.
We can distinguish between two cases: if the user is running single jobs and is actively waiting
for the output, resources can be added to minimize the wait time for these jobs (capability com-
puting). On the other hand, if the user is submitting jobs to a queue and the time-to-completion
of any given job is not crucial (capacity computing), resources can be added as the queue grows.
InHPC applications, users can consider the cloud resources as a cluster; this falls under Infrastructure-
as-a-Service (IAS): the cloud service is a computing platforms allowing customization at the op-
erating system level.

• Multi-tenancy. Here the same software is offered to multiple users, giving each the opportunity
for individual customizations. This falls under Software-as-a-Service (SAS): software is provided
on demand; the customer does not purchase software, but only pays for its use.

• Batch processing. This is a limited version of one of the Scaling scenarios above: the user has a
large amount of data to process in batch mode. The cloud then becomes a batch processor. This
model is a good candidate for MapReduce computations; section 2.11.3.

• Storage. Most cloud providers offer database services, so this model absolves the user frommain-
taining their own database, just like the Scaling and Batch processingmodels take away the user’s
concern with maintaining cluster hardware.

• Synchronization. This model is popular for commercial user applications. Netflix and Amazon’s
Kindle allow users to consume online content (streaming movies and ebooks respectively); after
pausing the content they can resume from any other platform. Apple’s recent iCloud provides
synchronization for data in office applications, but unlike Google Docs the applications are not
‘in the cloud’ but on the user machine.

The first Cloud to be publicly accessiblewasAmazon’s Elastic Compute cloud (EC2), launched in 2006. EC2
offers a variety of different computing platforms and storage facilities. Nowadays more than a hundred
companies provide cloud based services, well beyond the initial concept of computers-for-rent.

The infrastructure for cloud computing can be interesting from a computer science point of view, involv-
ing distributed file systems, scheduling, virtualization, and mechanisms for ensuring high reliability.

An interesting project, combining aspects of grid and cloud computing is the CanadianAdvancedNetwork
For Astronomical Research[169]. Here large central datasets are being made available to astronomers as in
a grid, together with compute resources to perform analysis on them, in a cloud-likemanner. Interestingly,
the cloud resources even take the form of user-configurable virtual clusters.

2.11.1.2 Characterization

Summarizing13 we have three cloud computing service models:

12. Based on a blog post by Ricky Ho: http://blogs.globallogic.com/five-cloud-computing-patterns.
13. The remainder of this section is based on the NIST definition of cloud computing http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf.
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Software as a Service The consumer runs the provider’s application, typically through a thin client such
as a browser; the consumer does not install or administer software. A good example is Google
Docs

Platform as a Service The service offered to the consumer is the capability to run applications devel-
oped by the consumer, who does not otherwise manage the processing platform or data storage
involved.

Infrastructure as a Service The provider offers to the consumer both the capability to run software,
and to manage storage and networks. The consumer can be in charge of operating system choice
and network components such as firewalls.

These can be deployed as follows:

Private cloud The cloud infrastructure is managed by one organization for its own exclusive use.
Public cloud The cloud infrastructure is managed for use by a broad customer base.

One could also define hybrid models such as community clouds.

The characteristics of cloud computing are then:

On-demand and self service The consumer can quickly request services and change service levels,
without requiring human interaction with the provider.

Rapid elasticity The amount of storage or computing power appears to the consumer to be unlimited,
subject only to budgeting constraints. Requesting extra facilities is fast, in some cases automatic.

Resource pooling Virtualization mechanisms make a cloud appear like a single entity, regardless its
underlying infrastructure. In some cases the cloud remembers the ‘state’ of user access; for in-
stance, Amazon’s Kindle books allow one to read the same book on a PC, and a smartphone; the
cloud-stored book ‘remembers’ where the reader left off, regardless the platform.

Network access Clouds are available through a variety of network mechanisms, from web browsers to
dedicated portals.

Measured service Cloud services are typically ‘metered’, with the consumer paying for computing time,
storage, and bandwidth.

2.11.2 Capability versus capacity computing

Large parallel computers can be used in two different ways. In later chapters you will see how scientific
problems can be scaled up almost arbitrarily. This means that with an increasing need for accuracy or
scale, increasingly large computers are needed. The use of a whole machine for a single problem, with
only time-to-solution as the measure of success, is known as capability computing.

On the other hand, many problems need less than a whole supercomputer to solve, so typically a com-
puting center will set up a machine so that it serves a continuous stream of user problems, each smaller
than the full machine. In this mode, the measure of success is the sustained performance per unit cost.
This is known as capacity computing, and it requires a finely tuned job scheduling strategy.

A popular scheme is fair-share scheduling, which tries to allocate resources equally between users, rather
than between processes. This means that it will lower a user’s priority if the user had recent jobs, and
it will give higher priority to short or small jobs. Examples of schedulers on this principle are SGE and
Slurm.
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Jobs can have dependencies, which makes scheduling harder. In fact, under many realistic conditions
scheduling problems are NP-complete, so in practice heuristics will be used. This topic, while interesting,
is not further discussed in this book.

2.11.3 MapReduce

MapReduce [41] is a programming model for certain parallel operations. One of its distinguishing charac-
teristics is that it is implemented using functional programming. The MapReduce model handles compu-
tations of the following form:

• For all available data, select items that satisfy a certain criterion;
• and emit a key-value pair for them. This is the mapping stage.
• Optionally there can be a combine/sort stage where all pairs with the same key value are grouped
together.

• Then do a global reduction on the keys, yielding one or more of the corresponding values. This
is the reduction stage.

We will now give a few examples of using MapReduce, and present the functional programming model
that underlies the MapReduce abstraction.

2.11.3.1 Expressive power of the MapReduce model

The reduce part of the MapReduce model makes it a prime candidate for computing global statistics on
a dataset. One example would be to count how many times each of a set of words appears in some set
of documents. The function being mapped knows the set of words, and outputs for each document a
pair of document name and a list with the occurrence counts of the words. The reduction then does a
componentwise sum of the occurrence counts.

The combine stage of MapReduce makes it possible to transform data. An example is a ‘ReverseWeb-Link
Graph’: the map function outputs target-source pairs for each link to a target URL found in a page named
”source”. The reduce function concatenates the list of all source URLs associated with a given target URL
and emits the pair target-list(source).

A less obvious example is computing PageRank (section 9.4) withMapReduce. Herewe use the fact that the
PageRank computation relies on a distributed sparse matrix-vector product. Each web page corresponds
to a column of the web matrix 𝑊 ; given a probability 𝑝𝑗 of being on page 𝑗, that page can then compute
tuples ⟨𝑖, 𝑤𝑖𝑗𝑝𝑗⟩. The combine stage of MapReduce then sums together (𝑊𝑝)𝑖 = ∑𝑗 𝑤𝑖𝑗𝑝𝑗 .
Database operations can be implemented with MapReduce but since it has a relatively large latency, it is
unlikely to be competitive with standalone databases, which are optimized for fast processing of a single
query, rather than bulk statistics.

Sorting with MapReduce is considered in section 8.5.1.

For other applications see http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.
html.
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2.11.3.2 Mapreduce software

The implementation of MapReduce by Google was released under the name Hadoop. While it suited the
Google model of single-stage reading and processing of data, it had considerable disadvantages for many
other users:

• Hadoop would flush all its data back to disc after each MapReduce cycle, so for operations that
take more than a single cycle the file system and bandwidth demands are too great.

• In computing center environments, where a user’s data is not continuously online, the time re-
quired for loading data into Hadoop File System (HDFS) would likely overwhelm the actual anal-
ysis.

For these reasons, further projects such as Apache Spark (https://spark.apache.org/) offer caching
of data.

2.11.3.3 Implementation issues

Implementing MapReduce on a distributed system has an interesting problem: the set of keys in the key-
value pairs is dynamically determined. For instance, in the ‘word count’ type of applications above we do
not a priori know the set of words. Therefore it is not clear which reducer process to send the pair to.

We could for instance use a hash function to determine this. Since every process uses the same function,
there is not disagreement. This leaves the problem that a process does not know how many messages
with key-value pairs to receive. The solution to this was described in section 6.5.6.

2.11.3.4 Functional programming

Themapping and reduction operations are readily implemented on any type of parallel architecture, using
a combination of threading and message passing. However, at Google where this model was developed
traditional parallelism was not attractive for two reasons. First of all, processors could fail during the
computation, so a traditional model of parallelism would have to be enhanced with fault tolerance mech-
anisms. Secondly, the computing hardware could already have a load, so parts of the computation may
need to be migrated, and in general any type of synchronization between tasks would be very hard.

MapReduce is one way to abstract from such details of parallel computing, namely through adopting a
functional programmingmodel. In such a model the only operation is the evaluation of a function, applied
to some arguments, where the arguments are themselves the result of a function application, and the result
of the computation is again used as argument for another function application. In particular, in a strict
functional model there are no variables, so there is no static data.

A function application, written in Lisp style as (f a b) (meaning that the function f is applied to argu-
ments a and b) would then be executed by collecting the inputs from whereven they are to the processor
that evaluates the function f. The mapping stage of a MapReduce process is denoted

(map f (some list of arguments))

and the result is a list of the function results of applying f to the input list. All details of parallelism and
of guaranteeing that the computation successfully finishes are handled by the map function.

Now we are only missing the reduction stage, which is just as simple:
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(reduce g (map f (the list of inputs)))

The reduce function takes a list of inputs and performs a reduction on it.

The attractiveness of this functional model lies in the fact that functions can not have side effects: because
they can only yield a single output result, they can not change their environment, and hence there is no
coordination problem of multiple tasks accessing the same data.

Thus, MapReduce is a useful abstraction for programmers dealing with large amounts of data. Of course,
on an implementation level the MapReduce software uses familiar concepts such as decomposing the data
space, keeping a work list, assigning tasks to processors, retrying failed operations, et cetera.

2.11.4 The top500 list

There are several informalways ofmeasuring just ‘how big’ a computer is. Themost popular is the TOP500
list, maintained at http://www.top500.org/, which records a computer’s performance on the Linpack
benchmark. Linpack is a package for linear algebra operations, and no longer in use, since it has been
superseded by Lapack for shared memory and Scalapack for distributed memory computers. The bench-
mark operation is the solution of a (square, nonsingular, dense) linear system through LU factorization
with partial pivoting, with subsequent forward and backward solution.

The LU factorization operation is one that has great opportunity for cache reuse, since it is based on the
matrix-matrix multiplication kernel discussed in section 1.7.1. It also has the property that the amount of
work outweighs the amount of communication: 𝑂(𝑛3) versus 𝑂(𝑛2). As a result, the Linpack benchmark
is likely to run at a substantial fraction of the peak speed of the machine. Another way of phrasing this is
to say that the Linpack benchmark is a CPU-bound or compute-bound algorithm.

Typical efficiency figures are between 60 and 90 percent. However, it should be noted that many scientific
codes do not feature the dense linear solution kernel, so the performance on this benchmark is not indica-
tive of the performance on a typical code. Linear system solution through iterative methods (section 5.5),
for instance, is much less efficient in a flops-per-second sense, being dominated by the bandwidth between
CPU and memory (a bandwidth-bound algorithm).

One implementation of the Linpack benchmark that is often used is ‘High-Performance LINPACK’ (http:
//www.netlib.org/benchmark/hpl/), which has several parameters such as blocksize that can be cho-
sen to tune the performance.

2.11.4.1 The top500 list as a recent history of supercomputing

The top500 list offers a history of almost 20 years of supercomputing. In this section we will take a brief
look at historical developments14. First of all, figure 2.43 shows the evolution of architecture types by
charting what portion of the aggregate peak performance of the whole list is due to each type.

• Vector machines feature a relatively small number of very powerful vector pipeline processors
(section 2.3.1.1). This type of architecture has largely disappeared; the last major machine of this
type was the Japanese Earth Simulator which is seen as the spike in the graph around 2002, and
which was at the top of the list for two years.

14. The graphs contain John McCalpin’s analysis of the top500 data.
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Figure 2.43: Evolution of the architecture types on the top500 list.

• Micro-processor based architectures get their power from the large number of processors in one
machine. The graph distinguishes between x86 (Intel and AMD processors with the exception of
the Intel Itanium) processors and others; see also the next graph.

• A number of systems were designed as highly scalable architectures: these are denoted MPP for
‘massively parallel processor’. In the early part of the timeline this includes architectures such as
the Connection Machine, later it is almost exclusively the IBM BlueGene.

• In recent years ‘accelerated systems’ are the upcoming trend. Here, a processing unit such as a
GPU is attached to the networked main processor.

Next, figure 2.44 shows the dominance of the x86 processor type relative to other micro-processors. (Since
we classified the IBM BlueGene as an MPP, its processors are not in the ‘Power’ category here.)

Finally, figure 2.45 shows the gradual increase in core count. Herewe canmake the following observations:

• In the 1990s many processors consisted of more than one chip. In the rest of the graph, we count
the number of cores per ‘package’, that is, per socket. In some cases a socket can actually contain
two separate dies.

• With the advent of multi-core processors, it is remarkable how close to vertical the section in
the graph are. This means that new processor types are very quickly adopted, and the lower core
counts equally quickly completely disappear.
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Figure 2.44: Evolution of the architecture types on the top500 list.

• For accelerated systems (mostly systems with GPUs) the concept of ‘core count’ is harder to
define; the graph merely shows the increasing importance of this type of architecture.

2.11.5 Heterogeneous computing

You have now seen several computing models: single core, shared memory multicore, distributed memory
clusters, GPUs. These models all have in common that, if there is more than one instruction stream active,
all streams are interchangeable. With regard to GPUs we need to refine this statement: all instruction
stream on the GPU are interchangeable. However, a GPU is not a standalone device, but can be considered
a co-processor to a host processor .

If we want to let the host perform useful work while the co-processor is active, we now have two different
instruction streams or types of streams. This situation is known as heterogeneous computing. In the GPU
case, these instruction streams are even programmed by a slightly different mechanisms – using CUDA for
the GPU– but this need not be the case: the IntelMany Integrated Cores (MIC) architecture is programmed
in ordinary C.
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Figure 2.45: Evolution of the architecture types on the top500 list.
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Chapter 3

Computer Arithmetic

Of the various types of data that one normally encounters, the ones we are concerned with in the context
of scientific computing are the numerical types: integers (or whole numbers) … ,−2, −1, 0, 1, 2, …, real
numbers 0, 1, −1.5, 2/3, √2, log 10, …, and complex numbers 1 + 2𝑖, √3 − √5𝑖, …. Computer hardware is
organized to give only a certain amount of space to represent each number, in multiples of bytes, each
containing 8 bits. Typical values are 4 bytes for an integer, 4 or 8 bytes for a real number, and 8 or 16 bytes
for a complex number.

Since only a certain amount of memory is available to store a number, it is clear that not all numbers
of a certain type can be stored. For instance, for integers only a range is stored. (Languages such as
Python have arbitrarily large integers, but this has no hardware support.) In the case of real numbers,
even storing a range is not possible since any interval [𝑎, 𝑏] contains infinitely many numbers. Therefore,
any representation of real numbers will cause gaps between the numbers that are stored. Calculations in
a computer are sometimes described as finite precision arithmetic, to reflect that in general you not store
numbers with infinite precision.

Since many results are not representable, any computation that results in such a number will have to be
dealt with by issuing an error or by approximating the result. In this chapter we will look at how finite
precision is realized in a computer, and the ramifications of such approximations of the ‘true’ outcome of
numerical calculations.

For detailed discussions,
• the ultimate reference to floating point arithmetic is the IEEE 754 standard [1];
• for secondary reading, see the book by Overton [155]; it is easy to find online copies of the essay
by Goldberg [78];

• for extensive discussions of round-off error analysis in algorithms, see the books byHigham [104]
and Wilkinson [192].

3.1 Bits
At the lowest level, computer storage and computer numbers are organized in bits. A bit, short for ‘binary
digit’, can have the values zero and one. Using bits we can then express numbers in binary notation:

100102 ≡ 1810 (3.1)
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where the subscript indicates the base of the number system, and in both cases the rightmost digit is the
least significant one.

The next organizational level of memory is the byte: a byte consists of eight bits, and can therefore rep-
resent the values 0⋯ 255.
Exercise 3.1. Use bit operations to test whether a number is odd or even.

Can you think of more than one way?

3.2 Integers

In scientific computing, most operations are on real numbers. Computations on integers rarely add up
to any serious computation load, except in applications such as cryptography. There are also applica-
tions such as ‘particle-in-cell’ that can be implemented with bit operations. However, integers are still
encountered in indexing calculations.

Integers are commonly stored in 16, 32, or 64 bits, with 16 becoming less common and 64 becoming more
andmore so. Themain reason for this increase is not the changing nature of computations, but the fact that
integers are used to index arrays. As the size of data sets grows (in particular in parallel computations),
larger indices are needed. For instance, in 32 bits one can store the numbers zero through 232−1 ≈ 4 ⋅ 109.
In other words, a 32 bit index can address 4 gigabytes of memory. Until recently this was enough for most
purposes; these days the need for larger data sets has made 64 bit indexing necessary.

When we are indexing an array, only positive integers are needed. In general integer computations, of
course, we need to accommodate the negative integers too. We will now discuss several strategies for
implementing negative integers. Our motivation here will be that arithmetic on positive and negative
integers should be as simple as on positive integers only: the circuitry that we have for comparing and
operating on bitstrings should be usable for (signed) integers.

There are several ways of implementing negative integers. The simplest solution is to reserve one bit as a
sign bit, and use the remaining 31 (or 15 or 63; from now on we will consider 32 bits the standard) bits to
store the absolute magnitude. By comparison, we will call the straightforward interpretation of bitstrings
as unsigned integers.

bitstring 00⋯ 0 … 01⋯ 1 10⋯ 0 … 11⋯ 1
interpretation as unsigned int 0 … 231 − 1 231 … 232 − 1
interpretation as signed integer 0 ⋯ 231 − 1 −0 ⋯ −(231 − 1)

(3.2)

This scheme has some disadvantages, one being that there is both a positive and negative number zero.
This means that a test for equality becomes more complicated than simply testing for equality as a bit-
string. More importantly, in the second half of the bitstring, the interpretation as signed integer decreases,
going to the right. This means that a test for greater-than becomes complex; also adding a positive number
to a negative number now has to be treated differently from adding it to a positive number.
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Another solution would be to let an unsigned number 𝑛 be interpreted as 𝑛 − 𝐵 where 𝐵 is some plausible
bias, for instance 231.

bitstring 00⋯ 0 … 01⋯ 1 10⋯ 0 … 11⋯ 1
interpretation as unsigned int 0 … 231 − 1 231 … 232 − 1
interpretation as shifted int −231 … −1 0 … 231 − 1

(3.3)

This shifted scheme does not suffer from the ±0 problem, and numbers are consistently ordered. However,
if we compute 𝑛 − 𝑛 by operating on the bitstring that represents 𝑛, we do not get the bitstring for zero.

To ensure this desired behavior, we instead rotate the number line with positive and negative numbers to
put the pattern for zero back at zero. The resulting scheme, which is the one that is used most commonly,
is called 2’s complement. Using this scheme, the representation of integers is formally defined as follows.

Definition 2 Let 𝑛 be an integer, then the 2’s complement ‘bit pattern’ 𝛽(𝑛) is a non-negative integer defined
as follows:

• If 0 ≤ 𝑛 ≤ 231 − 1, the normal bit pattern for 𝑛 is used, that is

0 ≤ 𝑛 ≤ 231 − 1 ⇒ 𝛽(𝑛) = 𝑛. (3.4)

• For −231 ≤ 𝑛 ≤ −1, 𝑛 is represented by the bit pattern for 232 − |𝑛|:
−231 ≤ 𝑛 ≤ −1 ⇒ 𝛽(𝑛) = 232 − |𝑛|. (3.5)

We denote the inverse function that takes a bit pattern and interprets as integer with 𝜂 = 𝛽−1.

The following diagram shows the correspondence between bitstrings and their interpretation as 2’s com-
plement integer:

bitstring 𝑛 00⋯ 0 … 01⋯ 1 10⋯ 0 … 11⋯ 1
interpretation as unsigned int 0 … 231 − 1 231 … 232 − 1

interpretation 𝛽(𝑛) as 2’s comp. integer 0 ⋯ 231 − 1 −231 ⋯ −1
(3.6)

Some observations:

• There is no overlap between the bit patterns for positive and negative integers, in particular,
there is only one pattern for zero.

• The positive numbers have a leading bit zero, the negative numbers have the leading bit set. This
makes the leading bit act like a sign bit; however note the above discussion.

• If you have a positive number 𝑛, you get −𝑛 by flipping all the bits, and adding 1.

Exercise 3.2. For the ‘naive’ scheme and the 2’s complement scheme for negative numbers,
give pseudocode for the comparison test 𝑚 < 𝑛, where 𝑚 and 𝑛 are integers. Be careful
to distinguish between all cases of 𝑚, 𝑛 positive, zero, or negative.
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3.2.1 Integer overflow

Adding two numbers with the same sign, or multiplying two numbers of any sign, may lead to a result
that is too large or too small to represent. This is called overflow; see section 3.3.4 for the corresponding
floating point phenomenon. The following exercise lets you explore the behavior of an actual program.
Exercise 3.3. Investigate what happens when you perform such a calculation. What does your

compiler say if you try towrite down a non-representable number explicitly, for instance
in an assignment statement?

If you program this in C, it is worth noting that while you probably get an outcome that is understandable,
the behavior of overflow in the case of signed quantities is actually undefined under the C standard.

3.2.2 Addition in two’s complement

Let us consider doing some simple arithmetic on 2’s complement integers. We start by assuming that we
have hardware that works on unsigned integers. The goal is to see that we can use this hardware to do
calculations on signed integers, as represented in 2’s complement.

We consider the computation of 𝑚 + 𝑛, where 𝑚, 𝑛 are representable numbers:

0 ≤ |𝑚|, |𝑛| < 231. (3.7)

We distinguish different cases.
• The easy case is 0 < 𝑚, 𝑛. In that case we perform the normal addition, and as long as the result
stays under 231, we get the right result. If the result is 231 or more, we have integer overflow, and
there is nothing to be done about that.

Figure 3.1: Addition with one positive and one negative number in 2’s complement.

• Case 𝑚 > 0, 𝑛 < 0, and 𝑚 + 𝑛 > 0. Then 𝛽(𝑚) = 𝑚 and 𝛽(𝑛) = 232 − |𝑛|, so the unsigned addition
becomes

𝛽(𝑚) + 𝛽(𝑛) = 𝑚 + (232 − |𝑛|) = 232 + 𝑚 − |𝑛|. (3.8)

Since 𝑚 − |𝑛| > 0, this result is > 232. (See figure 3.1.) However, we observe that this is basically
𝑚 + 𝑛 with the 33rd bit set. If we ignore this overflowing bit, we then have the correct result.

• Case 𝑚 > 0, 𝑛 < 0, but 𝑚 + 𝑛 < 0. Then
𝛽(𝑚) + 𝛽(𝑛) = 𝑚 + (232 − |𝑛|) = 232 − (|𝑛| − 𝑚). (3.9)

Since |𝑛| − 𝑚 > 0 we get

𝜂(232 − (|𝑛| − 𝑚)) = − |(|𝑛| − 𝑚)| = 𝑚 − |𝑛| = 𝑚 + 𝑛. (3.10)
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3.2.3 Subtraction in two’s complement

In exercise 3.2 above you explored comparing two integers. Let us now explore how subtracting numbers
in two’s complement is implemented. Consider 0 ≤ 𝑚 ≤ 231 − 1 and 1 ≤ 𝑛 ≤ 231 and let us see what
happens in the computation of 𝑚 − 𝑛.
Suppose we have an algorithm for adding and subtracting unsigned 32-bit numbers. Can we use that to
subtract two’s complement integers? We start by observing that the integer subtraction 𝑚 − 𝑛 becomes
the unsigned addition 𝑚 + (232 − 𝑛).

• Case: 𝑚 < |𝑛|. In this case, 𝑚 − 𝑛 is negative and 1 ≤ |𝑚 − 𝑛| ≤ 231, so the bit pattern for 𝑚 − 𝑛 is

𝛽(𝑚 − 𝑛) = 232 − (𝑛 − 𝑚). (3.11)

Now, 232 − (𝑛 − 𝑚) = 𝑚 + (232 − 𝑛), so we can compute 𝑚 − 𝑛 in 2’s complement by adding the
bit patterns of 𝑚 and −𝑛 as unsigned integers:

𝜂(𝛽(𝑚)+𝛽(−𝑛)) = 𝜂(𝑚+(232−|𝑛|)) = 𝜂(232+(𝑚−|𝑛|)) = 𝜂 (232 − |𝑚 − |𝑛||) = 𝑚−|𝑛| = 𝑚+𝑛. (3.12)

• Case: 𝑚 > 𝑛. Here we observe that 𝑚 + (232 − 𝑛) = 232 +𝑚 − 𝑛. Since 𝑚 − 𝑛 > 0, this is a number
> 232 and therefore not a legitimate representation of a negative number. However, if we store
this number in 33 bits, we see that it is the correct result 𝑚 − 𝑛, plus a single bit in the 33-rd
position. Thus, by performing the unsigned addition, and ignoring the overflow bit, we again get
the correct result.

In both cases we conclude that we can perform the subtraction 𝑚−𝑛 by adding the unsigned number that
represent 𝑚 and −𝑛 and ignoring overflow if it occurs.

3.2.4 Binary coded decimal

Decimal numbers are not relevant in scientific computing, but they are useful in financial calculations,
where computations involving money absolutely have to be exact. Binary arithmetic is at a disadvantage
here, since numbers such as 1/10 are repeating fractions in binary. With a finite number of bits in the
mantissa, this means that the number 1/10 can not be represented exactly in binary. For this reason,
binary-coded-decimal schemes were used in old IBM mainframes, and are in fact being standardized in
revisions of IEEE 754 [1, 110]; see also section 3.4.

In BCD schemes, one or more decimal digits are encoded in a number of bits. The simplest scheme would
encode the digits 0… 9 in four bits. This has the advantage that in a BCD number each digit is readily
identified; it has the disadvantage that about 1/3 of all bits are wasted, since 4 bits can encode the num-
bers 0… 15. More efficient encodings would encode 0… 999 in ten bits, which could in principle store the
numbers 0… 1023. While this is efficient in the sense that few bits are wasted, identifying individual digits
in such a number takes some decoding. For this reason, BCD arithmetic needs hardware support from the
processor, which is rarely found these days; one example is the IBM Power architecture, starting with the
IBM Power6. Intel had ‘BCD opcodes’ that stored a decimal digit in 4 bits, so a byte could represent the
numbers 0⋯ 99. These opcodes were removed in 64-bit mode.
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3.3 Real numbers

In this section we will look at the principles of how real numbers are represented in a computer, and the
limitations of various schemes. Section 3.4 will discuss the specific IEEE 754 solution, and section 3.5 will
then explore the ramifications of this for arithmetic involving computer numbers.

3.3.1 They’re not really real numbers

In the mathematical sciences, we usually work with real numbers, so it’s convenient to pretend that
computers can do this too. However, since numbers in a computer have only a finite number of bits, most
real numbers can not be represented exactly. In fact, even many fractions can not be represented exactly,
since they repeat; for instance, 1/3 = 0.333…, which is not representable in either decimal or binary. An
illustration of this is given below in exercise 3.6.

Exercise 3.4. Some programming languages allow you to write loops with not just an integer,
but also with a real number as ‘counter’. Explain why this is a bad idea. Hint: when is
the upper bound reached?

Whether a fraction repeats depends on the number system. (Howwould youwrite 1/3 in ternary, or base 3,
arithmetic?) In binary computers this means that fractions such as 1/10, which in decimal arithmetic are
terminating, are repeating. Since decimal arithmetic is important in financial calculations, some people
care about the accuracy of this kind of arithmetic; see section 3.2.4 for a brief discussion of how this was
realized in computer hardware.

Exercise 3.5. Show that each binary fraction, that is, a number of the form 0.010101110012,
can exactly be represented as a terminating decimal fraction. What is the reason that
not every decimal fraction can be represented as a binary fraction?

Exercise 3.6. Above, it was mentioned that many fractions are not representable in binary.
Illustrate that by dividing a number first by 7, then multiplying it by 7 and dividing
by 49. Try as inputs 3.5 and 3.6.

3.3.2 Representation of real numbers

Real numbers are stored using a scheme that is analogous to what is known as ‘scientific notation’, where
a number is represented as a significand and an exponent, for instance 6.022 ⋅ 1023, which has a significand
6022 with a radix point after the first digit, and an exponent 23. This number stands for

6.022 ⋅ 1023 = [6 × 100 + 0 × 10−1 + 2 × 10−2 + 2 × 10−3] ⋅ 1023. (3.13)

For a general approach, we introduce a base 𝛽 , which is a small integer number, 10 in the preceding
example, and 2 in computer numbers. With this, we write numbers as a sum of 𝑡 terms:

𝑥 = ±1 × [𝑑1𝛽0 + 𝑑2𝛽−1 + 𝑑3𝛽−2 + ⋯ + 𝑑𝑡𝛽−𝑡+1𝑏] × 𝛽𝑒
= ±Σ𝑡𝑖=1𝑑𝑖𝛽1−𝑖 × 𝛽𝑒 (3.14)

where the components are

• the sign bit: a single bit storing whether the number is positive or negative;
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• 𝛽 is the base of the number system;
• 0 ≤ 𝑑𝑖 ≤ 𝛽 − 1 the digits of the mantissa or significand – the location of the radix point (decimal
point in decimal numbers) is implicitly assumed to the immediately following the first digit;

• 𝑡 is the length of the mantissa;
• 𝑒 ∈ [𝐿, 𝑈 ] exponent; typically 𝐿 < 0 < 𝑈 and 𝐿 ≈ −𝑈 .

Note that there is an explicit sign bit for the whole number, but the sign of the exponent is handled differ-
ently. For reasons of efficiency, 𝑒 is not a signed number; instead it is considered as an unsigned number in
excess of a certain minimum value. For instance, the bit pattern for the number zero is interpreted as 𝑒 = 𝐿.
3.3.2.1 Some examples

Let us look at some specific examples of floating point representations. Base 10 is the most logical choice
for human consumption, but computers are binary, so base 2 predominates there. Old IBM mainframes
grouped bits to make for a base 16 representation.

𝛽 𝑡 𝐿 𝑈
IEEE single precision (32 bit) 2 23 −126 127
IEEE double precision (64 bit) 2 53 −1022 1023

Old Cray 64 bit 2 48 −16383 16384
IBM mainframe 32 bit 16 6 −64 63

Packed decimal 10 50 −999 999

(3.15)

Of these, the single and double precision formats are by far the most common. We will discuss these in
section 3.4 and further; for packed decimal, see section 3.2.4.

3.3.3 Normalized and unnormalized numbers

The general definition of floating point numbers, equation (3.14), leaves us with the problem that numbers
can have more than one representation. For instance, .5 ×102 = .05×103. Since this would make computer
arithmetic needlessly complicated, for instance in testing equality of numbers, we use normalized floating
point numbers. A number is normalized if its first digit is nonzero. The implies that the mantissa part is
1 ≤ 𝑥𝑚 < 𝛽 .
A practical implication in the case of binary numbers is that the first digit is always 1, so we do not need
to store it explicitly. In the IEEE 754 standard, this means that every floating point number is of the form

1.𝑑1𝑑2 …𝑑𝑡 × 2𝑒 (3.16)

and only the digits 𝑑1𝑑2 …𝑑𝑡 are stored.

3.3.4 Limitations: overflow and underflow

Since we use only a finite number of bits to store floating point numbers, not all numbers can be repre-
sented. The ones that can not be represented fall into two categories: those that are too large or too small
(in some sense), and those that fall in the gaps.
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The second category, where a computational result has to be rounded or truncated to be representable, is
the basis of the field of round-off error analysis. We will study this in some detail in the following sections.

Numbers can be too large or too small in the following ways.

3.3.4.1 Overflow

The largest number we can store has every digit equal to 𝛽 :

unit fractional exponent

digit 𝛽 − 1 𝛽 − 1 ⋯ 𝛽 − 1
value 1 𝛽−1 ⋯ 𝛽−(𝑡−1) 𝑈

(3.17)

which adds up to

(𝛽 − 1) ⋅ 1 + (𝛽 − 1) ⋅ 𝛽−1 + ⋯ + (𝛽 − 1) ⋅ 𝛽−(𝑡−1) = 𝛽 − 𝛽−(𝑡−1), (3.18)

and the smallest number (that is, the most negative) is −(𝛽 − 𝛽−(𝑡−1)); anything larger than the former or
smaller than the latter causes a condition called overflow.

3.3.4.2 Underflow

The number closest to zero is 𝛽−(𝑡−1) ⋅ 𝛽𝐿.

unit fractional exponent

digit 0 0 ⋯ 0, 𝛽 − 1
value 0 0 ⋯ 0, 𝛽−(𝑡−1) 𝐿

(3.19)

A computation that has a result less than that (in absolute value) causes a condition called underflow.

The above ‘smallest’ number can not actually exist if we work with normalized numbers. Therefore, we
also need to look at ‘gradual underflow’.

3.3.4.3 Gradual underflow

The normalized number closest to zero is 1 ⋅ 𝛽𝐿.

unit fractional exponent

digit 1 0 ⋯ 0
value 1 0 ⋯ 0 𝐿

(3.20)
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Trying to compute a number less than that in absolute value is sometimes handled by using subnormal
(or denormalized or unnormalized) numbers, a process known as gradual underflow. In this case, a spe-
cial value of the exponent indicates that the number is no longer normalized. In the case IEEE standard
arithmetic (section 3.4) this is done through a zero exponent field.

However, this is typically tens or hundreds of times slower than computing with regular floating point
numbers1 . At the time of this writing, only the IBM Power6 (and up) has hardware support for gradual
underflow. Section 3.8.1 explores performance implications.

3.3.4.4 What happens with over/underflow?

The occurrence of overflow or underflow means that your computation will be ‘wrong’ from that point
on. Underflow will make the computation proceed with a zero where there should have been a nonzero;
overflow is represented as Inf, short for ‘infinite’.
Exercise 3.7. For real numbers 𝑥, 𝑦 , the quantity 𝑔 = √(𝑥2 + 𝑦2)/2 satisfies

𝑔 ≤ max{|𝑥|, |𝑦 |} (3.21)

so it is representable if 𝑥 and 𝑦 are. What can go wrong if you compute 𝑔 using the
above formula? Can you think of a better way?

Computing with Inf is possible to an extent: adding two of those quantities will again give Inf. However,
subtracting them gives NaN: ‘not a number’. (See section 3.4.1.1.)

In none of these cases will the computation end: the processor will continue, unless you tell it otherwise.
The ‘otherwise’ consists of you telling the compiler to generate an interrupt, which halts the computation
with an error message. See section 3.7.2.4.

3.3.4.5 Gradual underflow

Another implication of the normalization scheme is that we have to amend the definition of underflow
(see section 3.3.4 above): any number less than 1 ⋅ 𝛽𝐿 now causes underflow.

3.3.5 Representation error

Let us consider a real number that is not representable in a computer’s number system.

An unrepresentable number is approximated either by ordinary rounding, rounding up or down, or trun-
cation. This means that a machine number �̃� is the representation for all 𝑥 in an interval around it. With 𝑡
digits in the mantissa, this is the interval of numbers that differ from ̄𝑥 in the 𝑡 +1st digit. For the mantissa
part we get:

{𝑥 ∈ [�̃�, �̃� + 𝛽−𝑡+1) truncation

𝑥 ∈ [�̃� − 1
2𝛽−𝑡+1, �̃� + 1

2𝛽−𝑡+1) rounding
(3.22)

1. In real-time applications such as audio processing this phenomenon is especially noticeable; see http://phonophunk.
com/articles/pentium4-denormalization.php?pg=3.
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If 𝑥 is a number and �̃� its representation in the computer, we call 𝑥 − �̃� the representation error or absolute
representation error , and 𝑥−�̃�

𝑥 the relative representation error . Often we are not interested in the sign of

the error, so we may apply the terms error and relative error to |𝑥 − �̃�| and |𝑥−�̃�𝑥 | respectively.
Often we are only interested in bounds on the error. If 𝜖 is a bound on the error, we will write

�̃� = 𝑥 ± 𝜖 ≡
D

|𝑥 − �̃�| ≤ 𝜖 ⇔ �̃� ∈ [𝑥 − 𝜖, 𝑥 + 𝜖] (3.23)

For the relative error we note that

�̃� = 𝑥(1 + 𝜖) ⇔ | �̃� − 𝑥
𝑥 | ≤ 𝜖 (3.24)

Let us consider an example in decimal arithmetic, that is, 𝛽 = 10, and with a 3-digit mantissa: 𝑡 = 3. The
number 𝑥 = 1.256 has a representation that depends on whether we round or truncate: �̃�round = 1.26,
�̃�truncate = 1.25. The error is in the 4th digit: if 𝜖 = 𝑥 − �̃� then |𝜖| < 𝛽−(𝑡−1).
Exercise 3.8. The number in this example had no exponent part.What are the error and relative

error if there had been one?

Exercise 3.9. In binary arithmetic the unit digit is always 1 as remarked above. How does that
change the representation error?

3.3.6 Machine precision

Often we are only interested in the order of magnitude of the representation error, and we will write
�̃� = 𝑥(1 + 𝜖), where |𝜖| ≤ 𝛽−𝑡 . This maximum relative representation error is called the machine precision,
or sometimes machine epsilon. Typical values are:

{𝜖 ≈ 10−7 32-bit single precision

𝜖 ≈ 10−16 64-bit double precision
(3.25)

(After you have studied the section on the IEEE 754 standard, can you derive these values?)

Machine precision can be defined another way: 𝜖 is the smallest number that can be added to 1 so that
1+ 𝜖 has a different representation than 1. A small example shows how aligning exponents can shift a too
small operand so that it is effectively ignored in the addition operation:

1.0000 ×100
+ 1.0000 ×10−5 ⇒

1.0000 ×100
+ 0.00001 ×100
= 1.0000 ×100

(3.26)

Yet another way of looking at this is to observe that, in the addition 𝑥 + 𝑦 , if the ratio of 𝑥 and 𝑦 is too
large, the result will be identical to 𝑥 .
The machine precision is the maximum attainable accuracy of computations: it does not make sense to
ask for more than 6-or-so digits accuracy in single precision, or 15 in double.
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Exercise 3.10. Write a small program that computes the machine epsilon. Does it make any
difference if you set the compiler optimization levels low or high? (If you speak C++, can
you solve this exercise with a single templated code?)

Exercise 3.11. The number 𝑒 ≈ 2.72, the base for the natural logarithm, has various definitions.
One of them is

𝑒 = lim𝑛→∞(1 + 1/𝑛)𝑛. (3.27)

Write a single precision program that tries to compute 𝑒 in this manner. (Do not use the
pow function: code the power explicitly.) Evaluate the expression for an upper bound 𝑛 =
10𝑘 for some 𝑘. (How far do you let 𝑘 range?) Explain the output for large 𝑛. Comment
on the behavior of the error.

Exercise 3.12. The exponential function 𝑒𝑥 can be computed as

𝑒 = 1 + 𝑥 + 𝑥2
2! + 𝑥3

3! + ⋯ (3.28)

Code this and try it for some positive 𝑥 , for instance 𝑥 = 1, 3, 10, 50. How many terms
do you compute?
Now compute 𝑒−𝑥 for those values. Use for instance the same number of iterations as
for 𝑒𝑥 .
What do you observe about the 𝑒𝑥 versus 𝑒−𝑥 computation? Explain.

3.4 The IEEE 754 standard for floating point numbers

Some decades ago, issues such as the length of the mantissa and the rounding behavior of operations
could differ between computer manufacturers, and even between models from one manufacturer. This
was obviously a bad situation from a point of portability of codes and reproducibility of results. The IEEE

sign exponent mantissa

𝑝 𝑒 = 𝑒1 ⋯ 𝑒8 𝑠 = 𝑠1 … 𝑠23
31 30⋯ 23 22⋯ 0
± 2𝑒−127 2−𝑠1 + ⋯ + 2−𝑠23

(except 𝑒 = 0, 255)

sign exponent mantissa

𝑠 𝑒1 ⋯ 𝑒11 𝑠1 … 𝑠52
63 62⋯ 52 51⋯ 0
± 2𝑒−1023 2−𝑠1 + ⋯ + 2−𝑠52

(except 𝑒 = 0, 2047)

(3.29)

Figure 3.2: Single and double precision definition.

754 standard [1] codified all this in 1985, for instance stipulating 24 and 53 bits (before normalization) for
the mantissa in single and double precision arithmetic, using a storage sequence of sign bit, exponent,
mantissa; see figure 3.2.
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Remark 10 The full name of the 754 standard is ‘IEEE Standard for Binary Floating-Point Arithmetic (AN-
SI/IEEE Std 754-1985)’. It is also identical to IEC 559: ‘Binary floating-point arithmetic for microprocessor
systems’, superseded by ISO/IEC/IEEE 60559:2011.

IEEE 754 is a standard for binary arithmetic; there is a further standard, IEEE 854, that allows decimal
arithmetic.

Remark 11 ‘It was remarkable that so many hardware people there, knowing how difficult p754 would be,
agreed that it should benefit the community at large. If it encouraged the production of floating-point software
and eased the development of reliable software, it would help create a larger market for everyone’s hardware.
This degree of altruism was so astonishing that MATLAB’s creator Dr. Cleve Moler used to advise foreign
visitors not to miss the country’s two most awesome spectacles: the Grand Canyon, and meetings of IEEE
p754.’ W. Kahan, http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html.

The standard also declared the rounding behavior to be correct rounding: the result of an operation should
be the rounded version of the exact result. See section 3.5.1.

exponent numerical value range

(0⋯ 0) = 0 ±0.𝑠1 ⋯ 𝑠23 × 2−126 𝑠 = 0⋯ 01 ⇒ 2−23 ⋅ 2−126 = 2−149 ≈ 10−50
𝑠 = 1⋯ 11 ⇒ (1 − 2−23) ⋅ 2−126

(0⋯ 01) = 1 ±1.𝑠1 ⋯ 𝑠23 × 2−126 𝑠 = 0⋯ 00 ⇒ 1 ⋅ 2−126 ≈ 10−37
(0⋯ 010) = 2 ±1.𝑠1 ⋯ 𝑠23 × 2−125

⋯
(01111111) = 127 ±1.𝑠1 ⋯ 𝑠23 × 20 𝑠 = 0⋯ 00 ⇒ 1 ⋅ 20 = 1

𝑠 = 0⋯ 01 ⇒ 1 + 2−23 ⋅ 20 = 1 + 𝜖
𝑠 = 1⋯ 11 ⇒ (2 − 2−23) ⋅ 20 = 2 − 𝜖

(10000000) = 128 ±1.𝑠1 ⋯ 𝑠23 × 21
⋯

(11111110) = 254 ±1.𝑠1 ⋯ 𝑠23 × 2127
(11111111) = 255 𝑠1 ⋯ 𝑠23 = 0 ⇒ ±∞

𝑠1 ⋯ 𝑠23 ≠ 0 ⇒ NaN

(3.30)

Figure 3.3: Interpretation of single precision numbers depending on the exponent bit pattern.

An inventory of the meaning of all bit patterns in IEEE 754 single precision is given in figure 3.3. Recall
from section 3.3.3 above that for normalized numbers the first nonzero digit is a 1, which is not stored, so
the bit pattern 𝑑1𝑑2 …𝑑𝑡 is interpreted as 1.𝑑1𝑑2 …𝑑𝑡 .
The highest exponent is used to accommodate Inf and Nan; see section 3.4.1.1.
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Exercise 3.13. Every programmer, at some point in their life, makes the mistake of storing a
real number in an integer or the other way around. This can happen for instance if you
call a function differently from how it was defined.

void a(double x) {....}
int main() {

int i;
.... a(i) ....

}

What happens when you print x in the function? Consider the bit pattern for a small
integer, and use the table in figure 3.3 to interpret it as a floating point number. Explain
that it will be a subnormal number.
(This is one of those errors you won’t forget after you make it. In the future, whenever
you see a number on the order of 10−305 you’ll recognize that you probably made this
error.)

These days, almost all processors adhere to the IEEE 754 standard. Early generations of the NVidia Tesla
GPUs were not standard-conforming in single precision. The justification for this was that single precision
is more likely used for graphics, where exact compliance matters less. For many scientific computations,
double precision is necessary, since the precision of calculations gets worse with increasing problem size
or runtime. This is true for the sort of calculations in chapter 4, but not for others such as the Lattice
Boltzmann Method (LBM).

3.4.1 Floating point exceptions

Various operations can give a result that is not representable as a floating point number. This situation is
called an exception, and we say that an exception is raised. (Note: these are not C++ or python exceptions.)
The result depends on the type of error, and the computation progresses normally. (It is possible to have
the program be interrupted: section 3.7.4.)

3.4.1.1 Not-a-Number

Apart from overflow and underflow, there are other exceptional situations. For instance, what result
should be returned if the program asks for illegal operations such as √−4? The IEEE 754 standard has
two special quantities for this: Inf and NaN for ‘infinity’ and ‘not a number’. Infinity is the result of
overflow or dividing by zero, not-a-number is the result of, for instance, subtracting infinity from infinity.

To be precise, processors will represent as NaN (‘not a number’) the result of:

• Addition Inf-Inf, but note that Inf+Inf gives Inf;
• Multiplication 0 × Inf;
• Division 0/0 or Inf/Inf;
• Remainder Inf rem 𝑥 or 𝑥 rem Inf;
• √𝑥 for 𝑥 < 0;
• Comparison 𝑥 < 𝑦 or 𝑥 > 𝑦 where any operand is Nan.
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Since the processor can continue computing with such a number, it is referred to as a quiet NaN. By
contrast, some NaN quantities can cause the processor to generate an interrupt or exception. This is called
a signaling NaN.

If NaN appears in an expression, the whole expression will evaluate to that value. The rule for computing
with Inf is a bit more complicated [78].

There are uses for a signaling NaN. You could for instance fill allocated memory with such a value, to
indicate that it is uninitialized for the purposes of the computation. Any use of such a value is then a
program error, and would cause an exception.

The 2008 revision of IEEE 754 suggests using the most significant bit of a NaN as the is_quiet bit to
distinguish between quiet and signaling NaNs.

See https://www.gnu.org/software/libc/manual/html_node/Infinity-and-NaN.html for treat-
ment of Nan in the GNU compiler.

Remark 12 NaN and Inf do not always propagate:

• A finite number divided by Inf is zero;
• The min/max of a finite number and NaN is not a NaN;
• Various transcendental functions treat Inf correctly, such as tan−1(Inf) = 𝜋/2.

3.4.1.2 Divide by zero

Division by zero results in Inf.

3.4.1.3 Overflow

This exception is raised if a result is not representable as a finite number.

3.4.1.4 Underflow

This exception is raised if a number is too small to be represented.

3.4.1.5 Inexact

This exception is raised for inexact results such as square roots, or overflow if that is not trapped.

3.5 Round-off error analysis

Numbers that are too large or too small to be represented, leading to overflow and underflow, are uncom-
mon: usually computations can be arranged so that this situation will not occur. By contrast, the case that
the result of a computation (even something as simple as a single addition) is not exactly representable
is very common. Thus, looking at the implementation of an algorithm, we need to analyze the effect of
such small errors propagating through the computation. This is commonly called round-off error analysis.
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3.5.1 Correct rounding

The IEEE 754 standard, mentioned in section 3.4, does not only declare the way a floating point number is
stored, it also gives a standard for the accuracy of operations such as addition, subtraction, multiplication,
division. The model for arithmetic in the standard is that of correct rounding: the result of an operation
should be as if the following procedure is followed:

• The exact result of the operation is computed, whether this is representable or not;
• This result is then rounded to the nearest computer number.

In short: the representation of the result of an operation is the rounded exact result of that operation.
Of course, after two operations it no longer needs to hold that the computed result is the exact rounded
version of the exact result.

If this statement sounds trivial or self-evident, consider subtraction as an example. In a decimal number
system with two digits in the mantissa, the computation

1.0 − 9.4 ⋅ 10−1 =
1.0 − 0.94 = 0.06

= 0.6 ⋅ 10−2
(3.31)

Note that in an intermediate step the mantissa .094 appears, which has one more digit than the two we
declared for our number system. The extra digit is called a guard digit.

Without a guard digit, this operation would have proceeded as 1.0 − 9.4 ⋅ 10−1, where 9.4 ⋅ 10−1 would be
normalized to 0.9, giving a final result of 0.1, which is almost double the correct result.
Exercise 3.14. Consider the computation 1.0 − 9.5 ⋅ 10−1, and assume again that numbers are

rounded to fit the 2-digit mantissa. Why is this computation in a way a lot worse than
the example?

One guard digit is not enough to guarantee correct rounding. An analysis that we will not reproduce here
shows that three extra bits are needed [77].

3.5.1.1 Mul-Add operations

In 2008, the IEEE 754 standardwas revised to include the behavior of FusedMultiply-Add (FMA) operations,
that is, operations of the form

𝑐 ← 𝑎 ∗ 𝑏 + 𝑐. (3.32)

This operation has a twofold motivation.

First, the FMA is potentially more accurate than a separate multiplication and addition, since it can use
higher precision for the intermediate results, for instance by using the 80-bit extended precision format;
section 3.8.4.

The standard here defines correct rounding to be that the result of this combined computation should be
the rounded correct result. A naive implementation of this operations would involve two roundings: one
after the multiplication and one after the addition2.

2. On the other hand, if the behavior of an application was ‘certified’ using a non-FMA architecture, the increased precision
breaks the certification. Chip manufacturers have been known to get requests for a ‘double-rounding’ FMA to counteract this
change in numerical behavior.
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Exercise 3.15. Can you come up with an example where correct rounding of an FMA is consid-
erably more accurate than rounding the multiplication and addition separately? Hint:
let the c term be of opposite sign as a*b, and try to force cancellation in the subtraction.

Secondly, FMA instructions are a way of getting higher performance: through pipelining we asymptoti-
cally get two operations per cycle. An FMA unit is then cheaper to construct than separate addition and
multiplication units. Fortunately, the FMA occurs frequently in practical calculations.
Exercise 3.16. Can you think of some linear algebra operations that features FMA operations?
See section 1.2.1.2 for historic use of FMA in processors.

3.5.2 Addition

Addition of two floating point numbers is done in a couple of steps.
1. First the exponents are aligned: the smaller of the two numbers is written to have the same

exponent as the larger number.
2. Then the mantissas are added.
3. Finally, the result is adjusted so that it again is a normalized number.

As an example, consider 1.00+2.00×10−2. Aligning the exponents, this becomes 1.00+0.02 = 1.02, and this
result requires no final adjustment. We note that this computation was exact, but the sum 1.00+2.55×10−2
has the same result, and here the computation is clearly not exact: the exact result is 1.0255, which is not
representable with three digits to the mantissa.

In the example 6.15×101+3.98×101 = 10.13×101 = 1.013×102 → 1.01×102 we see that after addition of the
mantissas an adjustment of the exponent is needed. The error again comes from truncating or rounding
the first digit of the result that does not fit in the mantissa: if 𝑥 is the true sum and �̃� the computed sum,
then �̃� = 𝑥(1 + 𝜖) where, with a 3-digit mantissa |𝜖| < 10−3.
Formally, let us consider the computation of 𝑠 = 𝑥1+𝑥2, andwe assume that the numbers 𝑥𝑖 are represented
as �̃�𝑖 = 𝑥𝑖(1 + 𝜖𝑖). Then the sum 𝑠 is represented as

̃𝑠 = (�̃�1 + �̃�2)(1 + 𝜖3)
= 𝑥1(1 + 𝜖1)(1 + 𝜖3) + 𝑥2(1 + 𝜖2)(1 + 𝜖3)
≈ 𝑥1(1 + 𝜖1 + 𝜖3) + 𝑥2(1 + 𝜖2 + 𝜖3)
≈ 𝑠(1 + 2𝜖)

(3.33)

under the assumptions that all 𝜖𝑖 are small and of roughly equal size, and that both 𝑥𝑖 > 0. We see that the
relative errors are added under addition.

3.5.3 Multiplication

Floating point multiplication, like addition, involves several steps. In order to multiply two numbers 𝑚1 ×
𝛽𝑒1 and 𝑚2 × 𝛽𝑒2 , the following steps are needed.

• The exponents are added: 𝑒 ← 𝑒1 + 𝑒2.
• The mantissas are multiplied: 𝑚 ← 𝑚1 × 𝑚2.
• The mantissa is normalized, and the exponent adjusted accordingly.

For example: 1.23 ⋅ 100 × 5.67 ⋅ 101 = 0.69741 ⋅ 101 → 6.9741 ⋅ 100 → 6.97 ⋅ 100.
Exercise 3.17. Analyze the relative error of multiplication.
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3.5.4 Subtraction

Subtraction behaves very differently from addition. Whereas in addition errors are added, giving only a
gradual increase of overall roundoff error, subtraction has the potential for greatly increased error in a
single operation.

For example, consider subtraction with 3 digits to the mantissa: 1.24−1.23 = 0.01 → 1.00 ⋅ 10−2. While the
result is exact, it has only one significant digit3. To see this, consider the case where the first operand 1.24
is actually the rounded result of a computation that should have resulted in 1.235:

.5 × 2.47 − 1.23 = 1.235 − 1.23 = 0.005 exact
↓ = 5.0 ⋅ 10−3

1.24 − 1.23 = 0.01 = 1. ⋅ 10−2 compute
(3.34)

Now, there is a 100% error, even though the relative error of the inputs was as small as could be expected.
Clearly, subsequent operations involving the result of this subtractionwill also be inaccurate.We conclude
that subtracting almost equal numbers is a likely cause of numerical roundoff.

There are some subtleties about this example. Subtraction of almost equal numbers is exact, and we have
the correct rounding behavior of IEEE arithmetic. Still, the correctness of a single operation does not
imply that a sequence of operations containing it will be accurate. While the addition example showed
only modest decrease of numerical accuracy, the cancellation in this example can have disastrous effects.
You’ll see an example in section 3.6.1.

Exercise 3.18. Consider the iteration

𝑥𝑛+1 = 𝑓 (𝑥𝑛) = {2𝑥𝑛 if 2𝑥𝑛 < 1
2𝑥𝑛 − 1 if 2𝑥𝑛 1 (3.35)

Does this function have a fixed point, 𝑥0 ≡ 𝑓 (𝑥0), or is there a cycle 𝑥1 = 𝑓 (𝑥0), 𝑥0 ≡
𝑥2 = 𝑓 (𝑥1) et cetera?
Now code this function. Is it possible to reproduce the fixed points? What happens with
various starting points 𝑥0. Can you explain this?

3.5.5 Associativity

Another effect of the way floating point numbers are treated is on the associativity of operations such
as summation. While summation is mathematically associative, this is no longer the case in computer
arithmetic.

Let’s consider a simple example, showing how associativity is affected by the rounding behavior of floating
point numbers. Let floating point numbers be stored as a single digit for the mantissa, one digit for the

3. Normally, a number with 3 digits to the mantissa suggests an error corresponding to rounding or truncating the fourth
digit. We say that such a number has 3 significant digits. In this case, the last two digits have no meaning, resulting from the
normalization process.
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exponent, and one guard digit; now consider the computation of 4 + 6 + 7. Evaluation left-to-right gives:

(4 ⋅ 100 + 6 ⋅ 100) + 7 ⋅ 100 ⇒ 10 ⋅ 100 + 7 ⋅ 100 addition
⇒ 1 ⋅ 101 + 7 ⋅ 100 rounding
⇒ 1.0 ⋅ 101 + 0.7 ⋅ 101 using guard digit
⇒ 1.7 ⋅ 101
⇒ 2 ⋅ 101 rounding

(3.36)

On the other hand, evaluation right-to-left gives:

4 ⋅ 100 + (6 ⋅ 100 + 7 ⋅ 100) ⇒ 4 ⋅ 100 + 13 ⋅ 100 addition
⇒ 4 ⋅ 100 + 1 ⋅ 101 rounding
⇒ 0.4 ⋅ 101 + 1.0 ⋅ 101 using guard digit
⇒ 1.4 ⋅ 101
⇒ 1 ⋅ 101 rounding

(3.37)

The conclusion is that the sequence in which rounding and truncation is applied to intermediate results
makes a difference.

Exercise 3.19. The above example used rounding. Can you come up with a similar example in
an arithmetic system using truncation?

Usually, the evaluation order of expressions is determined by the definition of the programming language,
or at least by the compiler. In section 3.6.5 we will see how in parallel computations the associativity is
not so uniquely determined.

3.6 Examples of round-off error
From the above, the reader may got the impression that roundoff errors only lead to serious problems
in exceptional circumstances. In this section we will discuss some very practical examples where the
inexactness of computer arithmetic becomes visible in the result of a computation. These will be fairly
simple examples; more complicated examples exist that are outside the scope of this book, such as the
instability of matrix inversion. The interested reader is referred to [104, 192].

3.6.1 Cancellation: the ‘abc-formula’

As a practical example, consider the quadratic equation 𝑎𝑥2+𝑏𝑥+𝑐 = 0which has solutions 𝑥 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎 .

Suppose 𝑏 > 0 and 𝑏2 ≫ 4𝑎𝑐 then √𝑏2 − 4𝑎𝑐 ≈ 𝑏 and the ‘+’ solution will be inaccurate. In this case it is

better to compute 𝑥− = −𝑏−√𝑏2−4𝑎𝑐
2𝑎 and use 𝑥+ ⋅ 𝑥− = 𝑐/𝑎.

Exercise 3.20. Explore computing the roots of

𝜖𝑥2 − (1 + 𝜖2)𝑥 + 𝜖 (3.38)

by the ‘textbook’ method and as described above.
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• What are the roots?
• Why does the textbook method compute one root as zero, for 𝜖 small enough? Can
you think of an example where this is very bad?

• What are the computed function values in both methods? Relative errors?

Exercise 3.21. Write a program that computes the roots of the quadratic equation, both the
‘textbook’ way, and as described above.

• Let 𝑏 = −1 and 𝑎 = −𝑐, and 4𝑎𝑐 ↓ 0 by taking progressively smaller values for 𝑎
and 𝑐.

• Print out the computed root, the root using the stable computation, and the value
of 𝑓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 in the computed root.

Now suppose that you don’t care much about the actual value of the root: you want to
make sure the residual 𝑓 (𝑥) is small in the computed root. Let 𝑥∗ be the exact root, then

𝑓 (𝑥∗ + ℎ) ≈ 𝑓 (𝑥∗) + ℎ𝑓 ′(𝑥∗) = ℎ𝑓 ′(𝑥∗). (3.39)

Now investigate separately the cases 𝑎 ↓ 0, 𝑐 = −1 and 𝑎 = −1, 𝑐 ↓ 0. Can you explain
the difference?

Exercise 3.22. Consider the functions

{𝑓 (𝑥) = √𝑥 + 1 − √𝑥
𝑔(𝑥) = 1/(√𝑥 + 1 + √𝑥)

(3.40)

• Show that they are the same in exact arithmetic; however:
• Show that 𝑓 can exhibit cancellation and that 𝑔 has no such problem.
• Write code to show the difference between 𝑓 and 𝑔. You may have to use large
values for 𝑥 .

• Analyze the cancellation in terms of 𝑥 and machine precision. When are √𝑥 + 1
and √𝑥 less than 𝜖 apart? What happens then? (For a more refined analysis, when
are they √𝜖 apart, and how does that manifest itself?)

• The inverse function of 𝑦 = 𝑓 (𝑥) is

𝑥 = (𝑦2 − 1)2/(4𝑦2) (3.41)

Add this to your code. Does this give any indication of the accuracy of the calcu-
lations?

Make sure to test your code in single and double precision. If you speak python, try the
bigfloat package.

3.6.2 Summing series

The previous example was about preventing a large roundoff error in a single operation. This example
shows that even gradual buildup of roundoff error can be handled in different ways.
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Consider the sum ∑10000
𝑛=1

1
𝑛2 = 1.644834… and assume we are working with single precision, which on

most computers means a machine precision of 10−7. The problem with this example is that both the ratio
between terms, and the ratio of terms to partial sums, is ever increasing. In section 3.3.6 we observed that
a too large ratio can lead to one operand of an addition in effect being ignored.

If we sum the series in the sequence it is given, we observe that the first term is 1, so all partial sums
(∑𝑁

𝑛=1 where 𝑁 < 10000) are at least 1. This means that any term where 1/𝑛2 < 10−7 gets ignored since
it is less than the machine precision. Specifically, the last 7000 terms are ignored, and the computed sum
is 1.644725. The first 4 digits are correct.

However, if we evaluate the sum in reverse order we obtain the exact result in single precision. We are still
adding small quantities to larger ones, but now the ratio will never be as bad as one-to-𝜖, so the smaller
number is never ignored. To see this, consider the ratio of two terms subsequent terms:

𝑛2
(𝑛 − 1)2 = 𝑛2

𝑛2 − 2𝑛 + 1 = 1
1 − 2/𝑛 + 1/𝑛2 ≈ 1 + 2

𝑛 (3.42)

Since we only sum 105 terms and the machine precision is 10−7, in the addition 1/𝑛2 + 1/(𝑛 − 1)2 the
second term will not be wholly ignored as it is when we sum from large to small.

Exercise 3.23. There is still a step missing in our reasoning. We have shown that in adding two
subsequent terms, the smaller one is not ignored. However, during the calculation we
add partial sums to the next term in the sequence. Show that this does not worsen the
situation.

The lesson here is that series that are monotone (or close to monotone) should be summed from small
to large, since the error is minimized if the quantities to be added are closer in magnitude. Note that this
is the opposite strategy from the case of subtraction, where operations involving similar quantities lead
to larger errors. This implies that if an application asks for adding and subtracting series of numbers,
and we know a priori which terms are positive and negative, it may pay off to rearrange the algorithm
accordingly.

Exercise 3.24. The sine function is defined as

sin(𝑥) = 𝑥 − 𝑥3
3! + 𝑥5

5! − 𝑥7
7! + ⋯

= ∑∞
𝑖≥0(−1)𝑖 𝑥2𝑖+1

(2𝑖+1)! .
(3.43)

Here are two code fragments that compute this sum (assuming that x and nterms are
given):

double term = x, sum = term;
for (int i=1; i<=nterms; i+=2) {

term *=
- x*x / (double)((i+1)*(i+2));

sum += term;
}
printf("Sum: %e\n\n",sum);

double term = x, sum = term;
double power = x, factorial = 1., factor = 1.;
for (int i=1; i<=nterms; i+=2) {

power *= -x*x;
factorial *= (factor+1)*(factor+2);
term = power / factorial;
sum += term; factor += 2;

}
printf("Sum: %e\n\n",sum);
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• Explain what happens if you compute a large number of terms for 𝑥 > 1.
• Does either code make sense for a large number of terms?
• Is it possible to sum the terms starting at the smallest? Would that be a good idea?
• Can you come with other schemes to improve the computation of sin(𝑥)?

3.6.3 Unstable algorithms

We will now consider an example where we can give a direct argument that the algorithm can not cope
with problems due to inexactly represented real numbers.

Consider the recurrence 𝑦𝑛 = ∫10 𝑥𝑛
𝑥−5𝑑𝑥 = 1

𝑛 −5𝑦𝑛−1, which is monotonically decreasing; the first term can
be computed as 𝑦0 = ln 6 − ln 5.
Performing the computation in 3 decimal digits we get:

computation correct result
𝑦0 = ln 6 − ln 5 = .182|322 × 101 … 1.82
𝑦1 = .900 × 10−1 .884
𝑦2 = .500 × 10−1 .0580
𝑦3 = .830 × 10−1 going up? .0431
𝑦4 = −.165 negative? .0343

We see that the computed results are quickly not just inaccurate, but actually nonsensical. We can analyze
why this is the case.

If we define the error 𝜖𝑛 in the 𝑛-th step as

̃𝑦𝑛 − 𝑦𝑛 = 𝜖𝑛, (3.44)

then

̃𝑦𝑛 = 1/𝑛 − 5 ̃𝑦𝑛−1 = 1/𝑛 + 5𝑛𝑛−1 + 5𝜖𝑛−1 = 𝑦𝑛 + 5𝜖𝑛−1 (3.45)

so 𝜖𝑛 ≥ 5𝜖𝑛−1. The error made by this computation shows exponential growth.

3.6.4 Linear system solving

Sometimes we can make statements about the numerical precision of a problem even without specifying
what algorithm we use. Suppose we want to solve a linear system, that is, we have an 𝑛 × 𝑛 matrix 𝐴 and
a vector 𝑏 of size 𝑛, and we want to compute the vector 𝑥 such that 𝐴𝑥 = 𝑏. (We will actually considering
algorithms for this in chapter 5.) Since the vector 𝑏 will the result of some computation or measurement,
we are actually dealing with a vector �̃�, which is some perturbation of the ideal 𝑏:

�̃� = 𝑏 + Δ𝑏. (3.46)

The perturbation vector Δ𝑏 can be of the order of the machine precision if it only arises from representa-
tion error, or it can be larger, depending on the calculations that produced �̃�.
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We now ask what the relation is between the exact value of 𝑥 , which we would have obtained from
doing an exact calculation with 𝐴 and 𝑏, which is clearly impossible, and the computed value �̃� , which
we get from computing with 𝐴 and �̃�. (In this discussion we will assume that 𝐴 itself is exact, but this is
a simplification.)

Writing �̃� = 𝑥 + Δ𝑥 , the result of our computation is now

𝐴�̃� = �̃� (3.47)

or

𝐴(𝑥 + Δ𝑥) = 𝑏 + Δ𝑏. (3.48)

Since 𝐴𝑥 = 𝑏, we get 𝐴Δ𝑥 = Δ𝑏. From this, we get (see appendix 13 for details)

{ Δ𝑥 = 𝐴−1Δ𝑏
𝐴𝑥 = 𝑏 } ⇒ { ‖𝐴‖‖𝑥‖ ≥ ‖𝑏‖

‖Δ𝑥‖ ≤ ‖𝐴−1‖‖Δ𝑏‖ ⇒ ‖Δ𝑥‖
‖𝑥‖ ≤ ‖𝐴‖‖𝐴−1‖ ‖Δ𝑏‖‖𝑏‖ (3.49)

The quantity ‖𝐴‖‖𝐴−1‖ is called the condition number of a matrix. The bound (3.49) then says that any
perturbation in the right hand side can lead to a perturbation in the solution that is at most larger by
the condition number of the matrix 𝐴. Note that it does not say that the perturbation in 𝑥 needs to be
anywhere close to that size, but we can not rule it out, and in some cases it indeed happens that this
bound is attained.

Suppose that 𝑏 is exact up to machine precision, and the condition number of 𝐴 is 104. The bound (3.49) is
often interpreted as saying that the last 4 digits of 𝑥 are unreliable, or that the computation ‘loses 4 digits
of accuracy’.

Equation (3.49) can also be interpreted as follows: when we solve a linear system 𝐴𝑥 = 𝑏 we get an
approximate solution 𝑥 + Δ𝑥 which is the exact solution of a perturbed system 𝐴(𝑥 + Δ𝑥) = 𝑏 + Δ𝑏. The
fact that the perturbation in the solution can be related to the perturbation in the system, is expressed by
saying that the algorithm exhibits backwards stability.

The analysis of the accuracy of linear algebra algorithms is a field of study in itself; see for instance the
book by Higham [104].

3.6.5 Roundoff error in parallel computations

As we discussed in section 3.5.5, and as you saw in the above example of summing a series, addition in
computer arithmetic is not associative. A similar fact holds for multiplication. This has an interesting con-
sequence for parallel computations: the way a computation is spread over parallel processors influences
the result.

As a very simple example, consider computing the sum of four numbers 𝑎+𝑏+𝑐+𝑑 . On a single processor,
ordinary execution corresponds to the following associativity:

((𝑎 + 𝑏) + 𝑐) + 𝑑. (3.50)
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On the other hand, spreading this computation over two processors, where processor 0 has 𝑎, 𝑏 and pro-
cessor 1 has 𝑐, 𝑑 , corresponds to

((𝑎 + 𝑏) + (𝑐 + 𝑑)). (3.51)

Generalizing this, we see that reduction operations will most likely give a different result on different
numbers of processors. (The MPI standard declares that two program runs on the same set of processors
should give the same result.) It is possible to circumvent this problem by replace a reduction operation
by a gather operation to all processors, which subsequently do a local reduction. However, this increases
the memory requirements for the processors.

There is an intriguing other solution to the parallel summing problem. If we use a mantissa of 4000 bits to
store a floating point number, we do not need an exponent, and all calculations with numbers thus stored
are exact since they are a form of fixed-point calculation [122, 123]. While doing a whole application
with such numbers would be very wasteful, reserving this solution only for an occasional inner product
calculation may be the solution to the reproducibility problem.

3.7 Computer arithmetic in programming languages

Different languages have different approaches to declaring integers and floating point numbers. Here we
study some of the issues.

3.7.1 C/C++ data models

The C/C++ language has short, int, float, double types (see section 3.8.7 for complex), plus the long and
unsigned modifiers on these. (Using long by itself is synonymous to long int.) The language standard gives
no explicit definitions on these, but only the following restrictions:

• A short int is at least 16 bits;
• An integer is at least 16 bits, which was the case in the old days of the DEC PDP-11, but nowadays
they are commonly 32 bits;

• A long integer is at least 32 bits, but often 64;
• A long long integer is at least 64 bits.
• If you need only one byte for your integer, you can use a char.

Additionally, pointers are related to unsigned integers; see section 3.7.2.3.

There are a number of conventions, called data models, for the actual sizes of these.

• LP32 (or ‘2/4/4’) has 16-bit ints, and 32 bits for long int and pointers. This is used in the Win16
API.

• ILP32 (or ‘4/4/4’) has 32 bits for int, long, and pointers. This is used in the Win32 API and on
most 32-bit Unix or Unix-like systems.

• LLP64 (or ‘4/4/8’) has 32 bits for int and long (!!!), and 64 bits for pointers. This is used in the
Win64 API.

• LP64 (or ‘4/8/8’) has 32-bit ints, and 64 bits for long and pointers.
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• ILP64 (or ‘8/8/8’) uses 64 bits for all of int, long, and pointers. This only existed on some early
Unix systems such as Cray UNICOS.

Also, see https://en.cppreference.com/w/cpp/language/types.

3.7.2 C/C++

Certain type handling is common to the C andC++ languages; see below formechanisms that are exclusive
to C++.

3.7.2.1 Bits

The C logical operators and their bit variants are:

boolean bitwise
and && &
or || |

not !
xor ^

The following bit shift operations are available:

left shift <<
right shift >>

You can do arithmetic with bit operations:
• Left-shift is multiplication by 2:

i_times_2 = i<<1;

• Extract bits:
i_mod_8 = i & 7

(How does that last one work?)
Exercise 3.25. Bit shift operations are normally applied to unsigned quantities. Are there extra

complications when you use bitshifts to multiply or divide by 2 in 2’s-complement?
The following code fragment is useful for printing the bit pattern of numbers:

// printbits.c
void printBits(size_t const size, void const * const ptr)
{

unsigned char *b = (unsigned char*) ptr;
unsigned char byte;
int i, j;

for (i=size-1;i>=0;i--)
for (j=7;j>=0;j--) {

byte = (b[i] >> j) & 1;
printf("%u", byte);

}
}
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Sample usage:

// bits.c
int five = 5;
printf("Five=%d, in bits: ",five);
printBits(sizeof(five),&five);
printf("\n");

3.7.2.2 Printing bit patterns

While C++ has a hexfloat format, this is not an intuitive way of displaying the bit pattern of a binary
number. Here is a handy routine for displaying the actual bits.

Code:

// bitprint.cxx
void format(const std::string &s)
{

// sign bit
std::cout << s.substr(0,1) << ' ';
// exponent
std::cout << s.substr(1,8);
// mantissa in groups of 4
for(int walk=9;walk<32;walk+=4)

std::cout << ' ' << s.substr(walk,4);
// newline
std::cout << "\n";

}
uint32_t u;
std::memcpy(&u,&d,sizeof(u));
std::bitset<32> b{u};
std::stringstream s;
s << std::hexfloat << b << '\n';
format(s.str());

Output
[code/754] bitprint:

Binary output of 3.14:

hexfloat:0x1.91eb86p+1
S eeeeeeee mmmm mmmm mmmm

mmmm mmmm mmm
0 10000000 1001 0001 1110

1011 1000 011

3.7.2.3 Integers and floating point numbers

The sizeof() operator gives the number of bytes used to store a datatype.

Floating point types are specified in float.h.

C integral types with specified storage exist: constants such as int64_t are defined by typedef in
stdint.h.

The constant NAN is declared in math.h. For checking whether a value is NaN, use isnan().

3.7.2.4 Changing rounding behavior

As mandated by the 754 standard, rounding behavior should be controllable. In C99, the API for this is
contained in fenv.h (or for C++ cfenv):

#include <fenv.h>

int roundings[] =
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{FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO};
rchoice = ....
int status = fesetround(roundings[rchoice]);

Setting the rounding behavior can serve as a quick test for the stability of an algorithm: if the result
changes appreciably between two different rounding strategies, the algorithm is likely not stable.

3.7.3 Limits

For C, the numerical ranges of C integers are defined in limits.h, typically giving an upper or lower
bound. For instance, INT_MAX is defined to be 32767 or greater.

In C++ you can still use the C header limits.h or climits, but it’s better to use std::numeric_limits,
which is templated over the types. (See Introduction to Scientific Programming book, section 24.2 for details.)

For instance

std::numerical_limits<int>.max();

3.7.4 Exceptions

Both the IEEE 754 standard and the C++ language define a concept exceptionwhich differ from each other.

• Floating point exceptions are the occurrence of ‘invalid numbers’, such as through overflow or
divide-by-zero (see section 3.4.1.1). Technically they denote the occurrence of an operation that
has ‘no outcome suitable for every reasonable application’.

• Programming languages can ‘throw an exception’, that is, interrupt regular program control flow,
if any type of unexpected event occurs.

3.7.4.1 Enabling

Sometimes it is possible to generate a language exception on a floating point exception.

The behavior on overflow can be set to generate an exception. In C, you specify this with a library call:

#include <fenv.h>
int main() {
...
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);

3.7.4.2 Exceptions defined

Exceptions defined:

• FE_DIVBYZERO pole error occurred in an earlier floating-point operation.
• FE_INEXACT inexact result: roundingwas necessary to store the result of an earlier floating-point
operation.

• FE_INVALID domain error occurred in an earlier floating-point operation.
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• FE_OVERFLOW the result of the earlier floating-point operation was too large to be representable.
• FE_UNDERFLOW the result of the earlier floating-point operation was subnormal with a loss of
precision.

• FE_ALL_EXCEPT bitwise OR of all supported floating-point exceptions .

Usage:

std::feclearexcept(FE_ALL_EXCEPT);
if(std::fetestexcept(FE_UNDERFLOW)) { /* ... */ }

In C++, std::numeric_limits<double>::quiet_NaN() is declared in limits, which is meaningful if
std::numeric_limits::has_quiet_NaN is true, which is the case if std::numeric_limits::is_iec559
is true. (ICE 559 is essentially IEEE 754; see section 3.4.)

The same module also has infinity() and signaling_NaN().

For checking whether a value is NaN, use std::isnan() from cmath in C++.

See further http://en.cppreference.com/w/cpp/numeric/math/nan.

3.7.4.3 Compiler-specific behavior

Trapping exceptions can sometimes be specified by the compiler. For instance, the gcc compiler can
trap exceptions by the flag -ffpe-trap=list; see https://gcc.gnu.org/onlinedocs/gfortran/
Debugging-Options.html.

3.7.5 Compiler flags for fast math

Various compilers have an option for fast math optimizations.

• GCC and Clang: -ffast-math
• Intel: -fp-model=fast (default)
• MSVC: /fp:fast

This typically covers the following cases:

• Finite math: assume that Inf and Nan don’t occur. This means that the test x==x is always true.
• Associative math: this allows rearranging the order of operations in an arithmetic expression.
This is known as re-association, and is for instance beneficial for vectorization. However, as you
saw in section 3.5.5, this can change the result of a computation. Also, it makes compensated
summation impossible; section 3.8.2.

• Flushing subnormals to zero.

Extensive discussion: https://simonbyrne.github.io/notes/fastmath/

3.7.6 Fortran

3.7.6.1 Variable ‘kind’s

Fortran has several mechanisms for indicating the precision of a numerical type.
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integer(2) :: i2
integer(4) :: i4
integer(8) :: i8

real(4) :: r4
real(8) :: r8
real(16) :: r16

complex(8) :: c8
complex(16) :: c16
complex*32 :: c32

This often corresponds to the number of bytes used, but not always. It is technically a numerical kind
selector , and it is nothing more than an identifier for a specific type.

integer, parameter :: k9 = selected_real_kind(9)
real(kind=k9) :: r
r = 2._k9; print *, sqrt(r) ! prints 1.4142135623730

The ‘kind’ values will usually be 4,8,16 but this is compiler dependent.

3.7.6.2 Rounding behavior

In Fortran2003 the function IEEE_SET_ROUNDING_MODE is available in the IEEE_ARITHMETIC module.

3.7.6.3 C99 and Fortran2003 interoperability

Recent standards of the C and Fortran languages incorporate the C/Fortran interoperability standard,
which can be used to declare a type in one language so that it is compatible with a certain type in the
other language.

3.7.7 Round-off behavior in programming

From the above discussion it should be clear that some simple statements that hold for mathematical real
numbers do not hold for floating-point numbers. For instance, in floating-point arithmetic

(𝑎 + 𝑏) + 𝑐 ≠ 𝑎 + (𝑏 + 𝑐). (3.52)

This implies that a compiler can not perform certain optimizations without it having an effect on round-
off behavior4 . In some codes such slight differences can be tolerated, for instance because the method has
built-in safeguards. For instance, the stationary iterative methods of section 5.5 damp out any error that
is introduced.

On the other hand, if the programmer has written code to account for round-off behavior, the compiler has
no such liberties. This was hinted at in exercise 3.10 above. We use the concept of value safety to describe

4. This section borrows from documents byMicrosoft http://msdn.microsoft.com/en-us/library/aa289157(vs.71)
.aspx and Intel http://software.intel.com/sites/default/files/article/164389/fp-consistency-122712_1.
pdf; for detailed discussion the reader is referred to these.
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how a compiler is allowed to change the interpretation of a computation. At its strictest, the compiler is
not allowed to make any changes that affect the result of a computation.

Compilers typically have an option controlling whether optimizations are allowed that may change the
numerical behavior. For the Intel compiler that is -fp-model=.... On the other hand, options such as
-Ofast are aimed at performance improvement only, and may affect numerical behavior severely. For the
Gnu compiler full 754 compliance takes the option -frounding-math whereas -ffast-math allows for
performance-oriented compiler transformations that violate 754 and/or the language standard.

These matters are also of importance if you care about reproducibility of results. If a code is compiled
with two different compilers, should runs with the same input give the same output? If a code is run in
parallel on two different processor configurations? These questions are very subtle. In the first case, people
sometimes insist on bitwise reproducibility, whereas in the second case some differences are allowed, as
long as the result stays ‘scientifically’ equivalent. Of course, that concept is hard to make rigorous.

Here are some issues that are relevant when considering the influence of the compiler on code behavior
and reproducibility.

Re-association Foremost among changes that a compiler can make to a computation is re-association,
the technical term for grouping 𝑎 + 𝑏 + 𝑐 as 𝑎 + (𝑏 + 𝑐). The C language standard and the C++ language
standard prescribe strict left-to-right evaluation of expressions without parentheses, so re-association is
in fact not allowed by the standard. The Fortran language standard has no such prescription, but there the
compiler has to respect the evaluation order that is implied by parentheses.

A common source of re-association is loop unrolling; see section 1.8.3. Under strict value safety, a com-
piler is limited in how it can unroll a loop, which has implications for performance. The amount of loop
unrolling, and whether it’s performed at all, depends on the compiler optimization level, the choice of
compiler, and the target platform.

A more subtle source of re-association is parallel execution; see section 3.6.5. This implies that the output
of a code need not be strictly reproducible between two runs on different parallel configurations.

Constant expressions It is a common compiler optimization to compute constant expressions during
compile time. For instance, in

float one = 1.;
...
x = 2. + y + one;

the compiler change the assignment to x = y+3.. However, this violates the re-association rule above,
and it ignores any dynamically set rounding behavior.

Expression evaluation In evaluating the expression 𝑎+(𝑏+𝑐), a processor will generate an intermediate
result for 𝑏 + 𝑐 which is not assigned to any variable. Many processors are able to assign a higher precision
of the intermediate result. A compiler can have a flag to dictate whether to use this facility.
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Behavior of the floating point unit Rounding behavior (truncate versus round-to-nearest) and treat-
ment of gradual underflow may be controlled by library functions or compiler options.

Library functions The IEEE 754 standard only prescribes simple operations; there is as yet no standard
that treats sine or log functions. Therefore, their implementation may be a source of variability.

For more discussion, see [137].

3.8 More about floating point arithmetic

3.8.1 Computing with underflow

Many processors will happily compute with denormals, but they have to emulate these computations in
micro-code. This severely depresses performance.

As an example, we compute a geometric sequence 𝑛 ↦ 𝑟𝑛 with 𝑟 < 1. For small enough values 𝑟 , this
sequence underflows, and the computation becomes slow. To get macroscopic timings, in this code we
actually operate on an array of identical numbers.

// denormal.cxx
/* init data */
for ( int t=0; t<stream_length; t++)

memory[t] = startvalue;

/* repeated scale the array */
for (int r=0; r<repeats; r++) {

for ( int t=0; t<stream_length; t++) {
memory[t] = ratio * memory[t];

}
memory.front() = memory.back();

}

The left column shows that the Intel i5 of a MacBook Air does not have hardware support for denormals.
The next two columns shows the Intel Cascade Lake but with two different compiler settings: First we use
the default behavior of flush-to-zero: any subnormal number is set to zero; then we show the slowdown
associated with correct handling of denormals.

This float type:
min normal=1.175494e-38

eps=1.192093e-07
progression from 1 with ratio: 0.9
final result: 0.00515377
nsec per access: 1.176

progression from 1.17549e-38 with ratio: 0.9
final result: 6.05823e-41 (underflow)
nsec per access: 47.567

This float type:
min normal=1.175494e-38

eps=1.192093e-07
progression from 1 with ratio: 0.9

final result: 0.00515377
nsec per access: 0.637

progression from 1.17549e-38 with ratio: 0.9
final result: 0 (flushed to zero)
nsec per access: 0.646

This float type:
min normal=1.175494e-38

eps=1.192093e-07
progression from 1 with ratio: 0.9

final result: 0.00515377
nsec per access: 1.321

progression from 1.17549e-38 with ratio: 0.9
final result: 6.05823e-41 (underflow)
nsec per access: 42.926
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3.8.2 Kahan summation

The example in section 3.5.5 made visible some of the problems of computer arithmetic: rounding can
cause results that are quite wrong, and very much dependent on evaluation order. A number of algorithms
exist that try to compensate for these problems, in particular in the case of addition. We briefly discuss
Kahan summation[114], named after William Kahan, which is one example of a compensated summation
algorithm.

sum ← 0
correction ← 0
while there is another input do

oldsum ← sum
input ← input − correction
sum ← oldsum + input
correction ← (sum − oldsum) − input

Exercise 3.26. Go through the example in section 3.5.5, adding a final term 3; that is compute
4 + 6 + 7 + 3 and 6 + 7 + 4 + 3 under the conditions of that example. Show that the
correction is precisely the 3 undershoot when 17 is rounded to 20, or the 4 overshoot
when 14 is rounded to 10; in both cases the correct result of 20 is computed.

3.8.3 Other computer arithmetic systems

Other systems have been proposed to dealing with the problems of inexact arithmetic on computers. One
solution is extended precision arithmetic, where numbers are stored in more bits than usual. A common
use of this is in the calculation of inner products of vectors: the accumulation is internally performed in
extended precision, but returned as a regular floating point number. Alternatively, there are libraries such
as GMPlib [76] that allow for any calculation to be performed in higher precision.

Another solution to the imprecisions of computer arithmetic is ‘interval arithmetic’ [111], where for each
calculation interval bounds are maintained. While this has been researched for considerable time, it is not
practically used other than through specialized libraries [21].

There have been some experiments with ternary arithmetic (see http://en.wikipedia.org/wiki/
Ternary_computer and http://www.computer-museum.ru/english/setun.htm), however, no prac-
tical hardware exists.

3.8.4 Extended precision

When the IEEE 754 standard was drawn up, it was envisioned that processors could have a whole range of
precisions. In practice, only single and double precision as defined have been used. However, one instance
of extended precision still survives: Intel processors have 80-bit registers for storing intermediate results.
(This goes back to the Intel 8087 co-processor .) This strategy makes sense in FMA instructions, and in the
accumulation of inner products.

These 80-bit registers have a strange structure with an significand integer bit that can give rise to bit
patterns that are not a valid representation of any defined number [162].
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3.8.5 Reduced precision

You can ask ‘does double precision always give benefits over single precision’ and the answer is not always
‘yes’ but rather: ‘it depends’.

3.8.5.1 Lower precision in iterative refinement

In iterative linear system solving (section 5.5, the accuracy is determined by how precise the residual is
calculated, not how precise the solution step is done. Therefore, one could do operations such as applying
the preconditioner (section 5.5.6) in reduced precision [26]. This is a form of iterative refinement; see
section 5.5.6.

3.8.5.2 Lower precision in Deep Learning

IEEE 754-2008 has a definition for the binary16 half precision format, which has a 5-bit exponent and
11-bit mantissa.

In Deep Learning (DL) it is more important to express the range of values than to be precise about the
exact value. (This is the opposite of traditional scientific applications, where close values need to be re-
solved.) This has led to the definition of the bfloat16 ‘brain float’ format https://en.wikipedia.org/
wiki/Bfloat16_floating-point_format which is a 16-bit floating point format. It uses 8 bits for the
exponent and 7 bits for the mantissa. This means that it shares the same exponent range as the IEEE single
precision format; see figure 3.4.

Figure 3.4: Comparison of fp32, fp16, and bfloat16 formats. (Illustration from [36].)

• Since bfloat16 and fp32 have the same structure in the first two bytes, a bfloat16 number can be
derived from an fp32 number by truncating the third and fourth byte. However, rounding may
give better results in practice.

• Conversely, casting a bloat16 to fp32 only requires filling the final two bytes with zeros.

The limited precision of bfloat16 is probably enough to represent quantities in DL applications, but in
order not to lose further precision it is envisioned that FMA hardware uses 32-bit numbers internally: the
product of two bfloat16 number is a regular 32-bit number. In order to compute inner products (which
happens as part of matrix-matrix multiplication in DL), we then need an FMA unit as in figure 3.5.

• The Intel Knights Mill, based on the Intel Knights Landing, has support for reduced precision.
• The Intel Cooper Lake implements the bfloat16 format [36].

Even further reduction to 8-bit was discussed in [47].
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Figure 3.5: An FMA unit taking two bloat16 and one fp32 number. (Illustration from [36].)

3.8.6 Fixed-point arithmetic

A fixed-point number (for a more thorough discussion than found here, see [196]) can be represented as
⟨𝑁 , 𝐹⟩ where 𝑁 ≥ 𝛽0 is the integer part and 𝐹 < 1 is the fractional part. Another way of looking at this,
is that a fixed-point number is an integer stored in 𝑁 + 𝐹 digits, with an implied decimal point after the
first 𝑁 digits.

Fixed-point calculations can overflow, with no possibility to adjust an exponent. Consider the multiplica-
tion ⟨𝑁1, 𝐹1⟩ × ⟨𝑁2, 𝐹2⟩, where 𝑁1 ≥ 𝛽𝑛1 and 𝑁2 ≥ 𝛽𝑛2 . This overflows if 𝑛1 +𝑛2 is more than the number of
positions available for the integer part. (Informally, the number of digits of the product is the sum of the
number of digits of the operands.) This means that, in a program that uses fixed-point, numbers will need
to have a number of leading zero digits, if you are ever going to multiply them, which lowers the numer-
ical accuracy. It also means that the programmer has to think harder about calculations, arranging them
in such a way that overflow will not occur, and that numerical accuracy is still preserved to a reasonable
extent.

So why would people use fixed-point numbers? One important application is in embedded low-power de-
vices, think a battery-powered digital thermometer. Since fixed-point calculations are essentially identical
to integer calculations, they do not require a floating-point unit, thereby lowering chip size and lessening
power demands. Also, many early video game systems had a processor that either had no floating-point
unit, or where the integer unit was considerably faster than the floating-point unit. In both cases, imple-
menting non-integer calculations as fixed-point, using the integer unit, was the key to high throughput.

Another area where fixed point arithmetic is still used is in signal processing. Inmodern CPUs, integer and
floating point operations are of essentially the same speed, but converting between them is relatively slow.
Now, if the sine function is implemented through table lookup, this means that in sin(sin 𝑥) the output of
a function is used to index the next function application. Obviously, outputting the sine function in fixed
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point obviates the need for conversion between real and integer quantities, which simplifies the chip logic
needed, and speeds up calculations.

3.8.7 Complex numbers

Some programming languages have complex numbers as a built-in data type, others not, and others are in
between. For instance, in Fortran you can declare

COMPLEX z1,z2, z(32)
COMPLEX*16 zz1, zz2, zz(36)

A complex number is a pair of real numbers, the real and imaginary part, allocated adjacent in memory.
The first declaration then uses 8 bytes to store to REAL*4 numbers, the second one has REAL*8s for the
real and imaginary part. (Alternatively, use DOUBLE COMPLEX or in Fortran90 COMPLEX(KIND=2) for the
second line.)

By contrast, the C language does not directly have complex numbers, but both C99 and C++ have a
complex.h header file5 . This defines as complex number as in Fortran, as two real numbers.

Storing a complex number like this is easy, but sometimes it is computationally not the best solution. This
becomes apparent when we look at arrays of complex numbers. If a computation often relies on access
to the real (or imaginary) parts of complex numbers exclusively, striding through an array of complex
numbers, has a stride two, which is disadvantageous (see section 1.4.0.7). In this case, it is better to allocate
one array for the real parts, and another for the imaginary parts.

Exercise 3.27. Suppose arrays of complex numbers are stored the Fortran way. Analyze the
memory access pattern of pairwise multiplying the arrays, that is, ∀𝑖∶ 𝑐𝑖 ← 𝑎𝑖 ⋅ 𝑏𝑖, where
a(), b(), c() are arrays of complex numbers.

Exercise 3.28. Show that an 𝑛 × 𝑛 linear system 𝐴𝑥 = 𝑏 over the complex numbers can be
written as a 2𝑛 × 2𝑛 system over the real numbers. Hint: split the matrix and the vectors
in their real and imaginary parts. Argue for the efficiency of storing arrays of complex
numbers as separate arrays for the real and imaginary parts.

3.9 Conclusions

Computations done on a computer are invariably beset with numerical error. In a way, the reason for
the error is the imperfection of computer arithmetic: if we could calculate with actual real numbers there
would be no problem. (There would still be the matter of measurement error in data, and approximations
made in numerical methods; see the next chapter.) However, if we accept roundoff as a fact of life, then
various observations hold:

• Mathematically equivalent operations need not behave identically from a point of stability; see
the ‘abc-formula’ example.

5. These two header files are not identical, and in fact not compatible. Beware, if you compile C code with a C++ compiler [52].
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• Even rearrangements of the same computations do not behave identically; see the summing ex-
ample.

Thus it becomes imperative to analyze computer algorithms with regard to their roundoff behavior: does
roundoff increase as a slowly growing function of problem parameters, such as the number of terms
evaluated, or is worse behavior possible? We will not address such questions in further detail in this
book.

3.10 Review questions

Exercise 3.29. True or false?
• For integer types, the ‘most negative’ integer is the negative of the ‘most positive’
integer.

• For floating point types, the ‘most negative’ number is the negative of the ‘most
positive’ one.

• For floating point types, the smallest positive number is the reciprocal of the largest
positive number.

208 Introduction to High Performance Scientific Computing



Chapter 4

Numerical treatment of differential equations

In this chapter we will look at the numerical solution of Ordinary Diffential Equations (ODEs) and Par-
tial Diffential Equations (PDEs). These equations are commonly used in physics to describe phenomena
such as the flow of air around an aircraft, or the bending of a bridge under various stresses. While these
equations are often fairly simple, getting specific numbers out of them (‘how much does this bridge sag if
there are a hundred cars on it’) is more complicated, often taking large computers to produce the desired
results. Here we will describe the techniques that turn ODEs and PDEs into computable problems, that is,
linear algebra. Chapter 5 will then look at computational aspects of these linear algebra problems.

First of all, in section 4.1 we will look at Initial Value Problems (IVPs), which describes processes that
develop in time. Here we consider ODEs: scalar functions that are only depend on time. The name derives
from the fact that typically the function is specified at an initial time point.

Next, in section 4.2 we will look at Boundary Value Problems (BVPs), describing processes in space. In re-
alistic situations, this will concern multiple space variables, so we have a PDE. The name BVP is explained
by the fact that the solution is specified on the boundary of the domain of definition.

Finally, in section 4.3 wewill consider the ‘heat equation’, an Initial Boundary Value Problem (IBVP) which
has aspects of both IVPs and BVPs: it describes heat spreading through a physical object such as a rod.
The initial value describes the initial temperature, and the boundary values give prescribed temperatures
at the ends of the rod.

Our aim in this chapter is to show the origins of an important class of computational problems. Therefore
we will not go into theoretical matters of existence, uniqueness, or conditioning of solutions. For this,
see [97] or any book that is specifically dedicated to ODEs or PDEs. For ease of analysis we will also
assume that all functions involved have sufficiently many higher derivatives, and that each derivative is
sufficiently smooth.

4.1 Initial value problems

Many physical phenomena change over time, and typically the laws of physics give a description of the
change, rather than of the quantity of interest itself. For instance, Newton’s second law

𝐹 = 𝑚𝑎 (4.1)
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is a statement about the change in position of a point mass: expressed as

𝑎(𝑡) = 𝑑2
𝑑𝑡2 𝑥(𝑡) = 𝐹/𝑚 (4.2)

it states that acceleration depends linearly on the force exerted on the mass. A closed form description
𝑥(𝑡) = … for the location of the mass can sometimes be derived analytically, but in many cases some ap-
proximation, usually by numerical computation, is needed. This is also known as ‘numerical integration’.

Newton’s second law (4.1) is an ODE since it describes a function of one variable, time. It is an IVP since it
describes the development in time, starting with some initial conditions. As an ODE, it is ‘of second order’
since it involves a second derivative, We can reduce this to first order, involving only first derivatives, if
we allow vector quantities. We introduce a two-component vector 𝑢 that combines the location 𝑥 and
velocity 𝑥′, where we use the prime symbol to indicate differentiation in case of functions of a single
variable:

𝑢(𝑡) = (𝑥(𝑡), 𝑥′(𝑡))𝑡 . (4.3)

Newton’s equation expressed in 𝑢 then becomes:

𝑢′ = 𝐴𝑢 + 𝐵, 𝐴 = (0 1
0 0) , 𝐵 = ( 0

𝐹/𝑎) . (4.4)

For simplicity, in this course we will only consider first-order scalar equations; our reference equation is
then

𝑢′(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)), 𝑢(0) = 𝑢0, 𝑡 > 0. (4.5)

Equation (4.5) allows for an explicit time dependence of the process, but in general we only consider
equations that do not have this explicit dependence, the so-called ‘autonomous’ ODEs of the form

𝑢′(𝑡) = 𝑓 (𝑢(𝑡)) (4.6)

in which the right hand side does not explicitly depend on 𝑡 .

Remark 13 Non-autonomous ODEs can be transformed to autonomous ones, so this is no limitation. If 𝑢 =
𝑢(𝑡) is a scalar function and 𝑓 = 𝑓 (𝑡, 𝑢), we define 𝑢2(𝑡) = 𝑡 and consider the equivalent autonomous system
( 𝑢′𝑢′2 ) = ( 𝑓 (𝑢2,𝑢)1 ).

Typically, the initial value in some starting point (often chosen as 𝑡 = 0) is given: 𝑢(0) = 𝑢0 for some
value 𝑢0, and we are interested in the behavior of 𝑢 as 𝑡 → ∞. As an example, 𝑓 (𝑥) = 𝑥 reduces equa-
tion (4.5) to 𝑢′(𝑡) = 𝑢(𝑡). This is a simple model for population growth: the equation states that the rate of
growth is equal to the size of the population. Now we consider the numerical solution and the accuracy
of this process.

In a numerical method, we choose discrete size time steps to approximate the solution of the continuous
time-dependent process. Since this introduces a certain amount of error, we will analyze the error intro-
duced in each time step, and how this adds up to a global error. In some cases, the need to limit the global
error will impose restrictions on the numerical scheme.
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4.1.1 Error and stability

Since numerical computation will always involve inaccuracies stemming from the use of machine arith-
metic, we want to avoid the situation where a small perturbation in the initial value leads to large pertur-
bations in the solution. Therefore, we will call a differential equation ‘stable’ if solutions corresponding
to different (but close enough) initial values 𝑢0 converge to one another as 𝑡 → ∞.

Theorem 2 A sufficient criterion for stability is:

𝜕
𝜕𝑢 𝑓 (𝑢) =

⎧
⎨
⎩

> 0 unstable
= 0 neutrally stable
< 0 stable

(4.7)

Proof. If 𝑢∗ is a zero of 𝑓 , meaning 𝑓 (𝑢∗) = 0, then the constant function 𝑢(𝑡) ≡ 𝑢∗ is a solution of
𝑢′ = 𝑓 (𝑢), a so-called ‘equilibrium’ solution. We will now consider how small perturbations from
the equilibrium behave. Let 𝑢 be a solution of the PDE, and write 𝑢(𝑡) = 𝑢∗ + 𝜂(𝑡), then we have

𝜂′ = 𝑢′ = 𝑓 (𝑢) = 𝑓 (𝑢∗ + 𝜂) = 𝑓 (𝑢∗) + 𝜂𝑓 ′(𝑢∗) + 𝑂(𝜂2)
= 𝜂𝑓 ′(𝑢∗) + 𝑂(𝜂2) (4.8)

Ignoring the second order terms, this has the solution

𝜂(𝑡) = 𝑒𝑓 ′(𝑥∗)𝑡 (4.9)

which means that the perturbation will damp out if 𝑓 ′(𝑥∗) < 0, and amplify if 𝑓 ′(𝑥∗) > 0.
We will often refer to the simple example 𝑓 (𝑢) = −𝜆𝑢, with solution 𝑢(𝑡) = 𝑢0𝑒−𝜆𝑡 . This problem is stable
if 𝜆 > 0.

4.1.2 Finite difference approximation: explicit and implicit Euler methods

In order to solve ODEs numerically, we turn the continuous problem into a discrete one by looking at
finite time/space steps. Assuming all functions are sufficiently smooth, a straightforward Taylor series
expansion of 𝑢 around 𝑡 (see appendix 16) gives:

𝑢(𝑡 + Δ𝑡) = 𝑢(𝑡) + 𝑢′(𝑡)Δ𝑡 + 𝑢″(𝑡)Δ𝑡
2

2! + 𝑢‴(𝑡)Δ𝑡
3

3! + ⋯ (4.10)

This gives for 𝑢′:

𝑢′(𝑡) = 𝑢(𝑡+Δ𝑡)−𝑢(𝑡)
Δ𝑡 + 1

Δ𝑡 (𝑢″(𝑡)
Δ𝑡2
2! + 𝑢‴(𝑡)Δ𝑡33! + ⋯)

= 𝑢(𝑡+Δ𝑡)−𝑢(𝑡)
Δ𝑡 + 1

Δ𝑡𝑂(Δ𝑡2)
= 𝑢(𝑡+Δ𝑡)−𝑢(𝑡)

Δ𝑡 + 𝑂(Δ𝑡)
(4.11)

We can approximate the infinite sum of higher derivatives by a single 𝑂(Δ𝑡2) if all derivatives are bounded;
alternatively, you can show that this sum is equal to Δ𝑡2𝑢″(𝑡 + 𝛼Δ𝑡) with 0 < 𝛼 < 1.
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We see that we can approximate a differential operator by a finite difference, with an error that is known
in its order of magnitude as a function of the time step.

Substituting this in 𝑢′ = 𝑓 (𝑡, 𝑢) transforms equation 4.6 into

𝑢(𝑡 + Δ𝑡) − 𝑢(𝑡)
Δ𝑡 = 𝑓 (𝑡, 𝑢(𝑡)) + 𝑂(Δ𝑡) (4.12)

or

𝑢(𝑡 + Δ𝑡) = 𝑢(𝑡) + Δ𝑡 𝑓 (𝑡, 𝑢(𝑡)) + 𝑂(Δ𝑡2). (4.13)

Remark 14 The preceding two equations are mathematical equalities, and should not be interpreted as a
way of computing 𝑢′ for a given function 𝑢. Recalling the discussion in section 3.5.4 you can see that such
a formula would quickly lead to cancellation for small Δ𝑡 . Further discussion of numerical differentiation is
outside the scope of this book; please see any standard numerical analysis textbook.

We now use equation (4.13) to derive a numerical scheme: with 𝑡0 = 0, 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 = ⋯ = (𝑘 + 1)Δ𝑡 , we
get a difference equation

𝑢𝑘+1 = 𝑢𝑘 + Δ𝑡 𝑓 (𝑡𝑘 , 𝑢𝑘) (4.14)

for 𝑢𝑘 quantities, and we hope that 𝑢𝑘 will be a good approximation to 𝑢(𝑡𝑘). This is known as the Explicit
Euler method, or Euler forward method.

The process of going from a differential equation to a difference equation is often referred to as discretiza-
tion, since we compute function values only in a discrete set of points. The values computed themselves
are still real valued. Another way of phrasing this: the numerical solution is found in the finite dimensional
space ℝ𝑘 if we compute 𝑘 time steps. The solution to the original problem is in the infnite-dimensional
space of functions ℝ → ℝ.
In equation (4.11) we approximated one operator by another, and in doing so made a truncation error
of order 𝑂(Δ𝑡) as Δ𝑡 ↓ 0 (see appendix 14 for a more formal introduction to this notation for orders of
magnitude.). This does not immediately imply that the difference equation computes a solution that is
close to the true solution. For that some more analysis is needed.

We start by analyzing the ‘local error’: if we assume the computed solution is exact at step 𝑘, that is,
𝑢𝑘 = 𝑢(𝑡𝑘), how wrong will we be at step 𝑘 + 1? We have

𝑢(𝑡𝑘+1) = 𝑢(𝑡𝑘) + 𝑢′(𝑡𝑘)Δ𝑡 + 𝑢″(𝑡𝑘)Δ𝑡
2

2! + ⋯
= 𝑢(𝑡𝑘) + 𝑓 (𝑡𝑘 , 𝑢(𝑡𝑘))Δ𝑡 + 𝑢″(𝑡𝑘)Δ𝑡

2
2! + ⋯ (4.15)

and

𝑢𝑘+1 = 𝑢𝑘 + 𝑓 (𝑡𝑘𝑢𝑘)Δ𝑡 (4.16)
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So

𝐿𝑘+1 = 𝑢𝑘+1 − 𝑢(𝑡𝑘+1) = 𝑢𝑘 − 𝑢(𝑡𝑘) + 𝑓 (𝑡𝑘 , 𝑢𝑘) − 𝑓 (𝑡𝑘 , 𝑢(𝑡𝑘)) − 𝑢″(𝑡𝑘)Δ𝑡
2

2! + ⋯
= −𝑢″(𝑡𝑘)Δ𝑡

2
2! + ⋯ (4.17)

This shows that in each step we make an error of 𝑂(Δ𝑡2). If we assume that these errors can be added, we
find a global error of

𝐸𝑘 ≈ Σ𝑘𝐿𝑘 = 𝑘Δ𝑡 Δ𝑡
2

2! = 𝑂(Δ𝑡) (4.18)

Since the global error is of first order in Δ𝑡 , we call this a ‘first order method’. Note that this error, which
measures the distance between the true and computed solutions, is of the same order 𝑂(Δ𝑡) as the trun-
cation error, which is the error in approximating the operator.

4.1.2.1 Stability of the Explicit Euler method

Consider the IVP 𝑢′ = 𝑓 (𝑡, 𝑢) for 𝑡 ≥ 0, where 𝑓 (𝑡, 𝑢) = −𝜆𝑢 and an initial value 𝑢(0) = 𝑢0 is given.
This has an exact solution of 𝑢(𝑡) = 𝑢0𝑒−𝜆𝑡 . From the above discussion, we conclude that this problem
is stable, meaning that small perturbations in the solution ultimately damp out, if 𝜆 > 0. We will now
investigate the question of whether the numerical solution behaves the same way as the exact solution,
that is, whether numerical solutions also converge to zero.

The Euler forward, or explicit Euler, scheme for this problem is

𝑢𝑘+1 = 𝑢𝑘 − Δ𝑡𝜆𝑢𝑘 = (1 − 𝜆Δ𝑡)𝑢𝑘 ⇒ 𝑢𝑘 = (1 − 𝜆Δ𝑡)𝑘𝑢0. (4.19)

For stability, we require that 𝑢𝑘 → 0 as 𝑘 → ∞. This is equivalent to

𝑢𝑘 ↓ 0 ⇔ |1 − 𝜆Δ𝑡| < 1
⇔ −1 < 1 − 𝜆Δ𝑡 < 1
⇔ −2 < −𝜆Δ𝑡 < 0
⇔ 0 < 𝜆Δ𝑡 < 2
⇔ Δ𝑡 < 2/𝜆

We see that the stability of the numerical solution scheme depends on the value of Δ𝑡 : the scheme is only
stable if Δ𝑡 is small enough. For this reason, we call the explicit Euler method conditionally stable. Note
that the stability of the differential equation and the stability of the numerical scheme are two different
questions. The continuous problem is stable if 𝜆 > 0; the numerical problem has an additional condition
that depends on the discretization scheme used.

Note that the stability analysis we just performed was specific to the differential equation 𝑢′ = −𝜆𝑢. If
you are dealing with a different IVP you have to perform a separate analysis. However, you will find that
explicit methods typically give conditional stability.
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4.1.2.2 The Euler implicit method

The explicit method you just sawwas easy to compute, but the conditional stability is a potential problem.
For instance, it could imply that the number of time steps would be a limiting factor. There is an alternative
to the explicit method that does not suffer from the same objection.

Instead of expanding 𝑢(𝑡 + Δ𝑡), consider the following expansion of 𝑢(𝑡 − Δ𝑡):

𝑢(𝑡 − Δ𝑡) = 𝑢(𝑡) − 𝑢′(𝑡)Δ𝑡 + 𝑢″(𝑡)Δ𝑡
2

2! + ⋯ (4.20)

which implies

𝑢′(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − Δ𝑡)
Δ𝑡 + 𝑢″(𝑡)Δ𝑡/2 + ⋯ (4.21)

As before, we take the equation 𝑢′(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) and approximate 𝑢′(𝑡) by a difference formula:

𝑢(𝑡) − 𝑢(𝑡 − Δ𝑡)
Δ𝑡 = 𝑓 (𝑡, 𝑢(𝑡)) + 𝑂(Δ𝑡) ⇒ 𝑢(𝑡) = 𝑢(𝑡 − Δ𝑡) + Δ𝑡𝑓 (𝑡, 𝑢(𝑡)) + 𝑂(Δ𝑡2) (4.22)

Again we define fixed points 𝑡𝑘 = 𝑘𝑡 , and we define a numerical scheme:

𝑢𝑘+1 = 𝑢𝑘 + Δ𝑡𝑓 (𝑡𝑘+1, 𝑢𝑘+1) (4.23)

where 𝑢𝑘 is an approximation of 𝑢(𝑡𝑘).
An important difference with the explicit scheme is that 𝑢𝑘+1 now also appears on the right hand side
of the equation. That is, the computation of 𝑢𝑘+1 is now implicit. For example, let 𝑓 (𝑡, 𝑢) = −𝑢3, then
𝑢𝑘+1 = 𝑢𝑘 − Δ𝑡𝑢3𝑘+1. In other words, 𝑢𝑘+1 is the solution for 𝑥 of the equation Δ𝑡𝑥3 + 𝑥 = 𝑢𝑘 . This is a
nonlinear equation, which typically can be solved using the Newton method.

4.1.2.3 Stability of the implicit Euler method

Let us take another look at the example 𝑓 (𝑡, 𝑢) = −𝜆𝑢. Formulating the implicit method gives

𝑢𝑘+1 = 𝑢𝑘 − 𝜆Δ𝑡𝑢𝑘+1 ⇔ (1 + 𝜆Δ𝑡)𝑢𝑘+1 = 𝑢𝑘 (4.24)

so

𝑢𝑘+1 = ( 1
1 + 𝜆Δ𝑡 ) 𝑢𝑘 ⇒ 𝑢𝑘 = ( 1

1 + 𝜆Δ𝑡 )
𝑘
𝑢0. (4.25)

If 𝜆 > 0, which is the condition for a stable equation, we find that 𝑢𝑘 → 0 for all values of 𝜆 and Δ𝑡 .
This method is called unconditionally stable. One advantage of an implicit method over an explicit one is
clearly the stability: it is possible to take larger time steps without worrying about unphysical behavior.
Of course, large time steps can make convergence to the steady state (see Appendix 15.4) slower, but at
least there will be no divergence.

On the other hand, implicit methods are more complicated. As you saw above, they can involve nonlinear
systems to be solved in every time step. In cases where 𝑢 is vector-valued, such as in the heat equation,
discussed below, you will see that the implicit method requires the solution of a system of equations.
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Exercise 4.1. Analyze the accuracy and computational aspects of the following scheme for the
IVP 𝑢′(𝑥) = 𝑓 (𝑥):

𝑢𝑖+1 = 𝑢𝑖 + ℎ(𝑓 (𝑥𝑖) + 𝑓 (𝑥𝑖+1))/2 (4.26)

which corresponds to adding the Euler explicit and implicit schemes together. You do
not have to analyze the stability of this scheme.

Exercise 4.2. Consider the initial value problem 𝑦 ′(𝑡) = 𝑦(𝑡)(1 − 𝑦(𝑡)). Observe that 𝑦 ≡ 0 and
𝑦 ≡ 1 are solutions. These are called ‘equilibrium solutions’.

1. A solution is stable, if perturbations ‘converge back to the solution’, meaning that
for 𝜖 small enough,

if 𝑦(𝑡) = 𝜖 for some 𝑡 , then lim𝑡→∞ 𝑦(𝑡) = 0 (4.27)

and

if 𝑦(𝑡) = 1 + 𝜖 for some 𝑡 , then lim𝑡→∞ 𝑦(𝑡) = 1 (4.28)

This requires for instance that

𝑦(𝑡) = 𝜖 ⇒ 𝑦 ′(𝑡) < 0. (4.29)

Investigate this behavior. Is zero a stable solution? Is one?
2. Consider the explicit method

𝑦𝑘+1 = 𝑦𝑘 + Δ𝑡𝑦𝑘(1 − 𝑦𝑘) (4.30)

for computing a numerical solution to the differential equation. Show that

𝑦𝑘 ∈ (0, 1) ⇒ 𝑦𝑘+1 > 𝑦𝑘 , 𝑦𝑘 > 1 ⇒ 𝑦𝑘+1 < 𝑦𝑘 (4.31)

3. Write a small program to investigate the behavior of the numerical solution un-
der various choices for Δ𝑡 . Include program listing and a couple of runs in your
homework submission.

4. You see from running your program that the numerical solution can oscillate. De-
rive a condition on Δ𝑡 that makes the numerical solution monotone. It is enough
to show that 𝑦𝑘 < 1 ⇒ 𝑦𝑘+1 < 1, and 𝑦𝑘 > 1 ⇒ 𝑦𝑘+1 > 1.

5. Now consider the implicit method

𝑦𝑘+1 − Δ𝑡𝑦𝑘+1(1 − 𝑦𝑘+1) = 𝑦𝑘 (4.32)

and show that 𝑦𝑘+1 can be computed from 𝑦𝑘 . Write a program, and investigate the
behavior of the numerical solution under various choices for Δ𝑡 .

6. Show that the numerical solution of the implicit scheme ismonotone for all choices
of Δ𝑡 .
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4.2 Boundary value problems

In the previous section you saw initial value problems, which model phenomena that evolve over time.
We will now move on to‘boundary value problems’, which are in general stationary in time, but which
describe a phenomenon that is location dependent. Examples would be the shape of a bridge under a load,
or the heat distribution in a window pane, as the temperature outside differs from the one inside.

The general form of a (second order, one-dimensional) BVP is

𝑢″(𝑥) = 𝑓 (𝑥, 𝑢, 𝑢′) for 𝑥 ∈ [𝑎, 𝑏] where 𝑢(𝑎) = 𝑢𝑎 , 𝑢(𝑏) = 𝑢𝑏 (4.33)

but here we will only consider the simple form (see appendix 15)

−𝑢″(𝑥) = 𝑓 (𝑥) for 𝑥 ∈ [0, 1] with 𝑢(0) = 𝑢0, 𝑢(1) = 𝑢1. (4.34)

in one space dimension, or

−𝑢𝑥𝑥 ( ̄𝑥) − 𝑢𝑦𝑦 ( ̄𝑥) = 𝑓 ( ̄𝑥) for ̄𝑥 ∈ Ω = [0, 1]2 with 𝑢( ̄𝑥) = 𝑢0 on 𝛿Ω. (4.35)

in two space dimensions. Here, 𝛿Ω is the boundary of the domain Ω. Since we prescribe the value of 𝑢 on
the boundary, such a problem is called a Boundary Value Problem (BVP).

Remark 15 The boundary conditions can be more general, involving derivatives on the interval end points.
Here we only look at Dirichlet boundary conditions which prescribe function values on the boundary of the
domain. The difference with Neumann boundary conditions are more mathematical than computational.

4.2.1 General PDE theory

There are several types of PDE, each with distinct mathematical properties. The most important property
is that of region of influence: if we tinker with the problem so that the solution changes in one point, what
other points will be affected.

4.2.1.1 Hyperbolic equations

PDEs are of the form

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑦𝑦 + lower order terms = 0 (4.36)

with 𝐴, 𝐵 of opposite sign. Such equations describe waves, or more general convective phenomena, that
are conservative, and do not tend to a steady state.

Intuitively, changing the solution of a wave equation at any point will only change certain future points,
since waves have a propagation speed that makes it impossible for a point to influence points in the near
future that are too far away in space. This type of PDE will not be discussed in this book.
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4.2.1.2 Parabolic equations

PDEs are of the form

𝐴𝑢𝑥 + 𝐵𝑢𝑦𝑦 + no higher order terms in 𝑥 = 0 (4.37)

and they describe diffusion-like phenomena; these often tend to a steady state. The best way to characterize
them is to consider that the solution in each point in space and time is influenced by a certain finite region
at each previous point in space.

Remark 16 This leads to a condition limiting the time step in IBVP, known as the Courant-Friedrichs-Lewy
condition. It describes the notion that in the exact problem 𝑢(𝑥, 𝑡) depends on a range of 𝑢(𝑥′, 𝑡 − Δ𝑡) values;
the time step of the numerical method has to be small enough that the numerical solution takes all these
points into account.

The heat equation (section 4.3) is the standard example of the parabolic type.

4.2.1.3 Elliptic equations

PDEs have the form

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑦𝑦 + lower order terms = 0 (4.38)

where𝐴, 𝐵 > 0; they typically describe processes that have reached a steady state, for instance as 𝑡 → ∞ in
a parabolic problem. They are characterized by the fact that all points influence each other. These equa-
tions often describe phenomena in structural mechanics, such as a beam or a membrane. It is intuitively
clear that pressing down on any point of a membrane will change the elevation of every other point, no
matter how little. The Laplace equation (section 4.2.2) is the standard example of this type.

4.2.2 The Laplace equation in one space dimension

We call the operator Δ, defined by

Δ𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 , (4.39)

a second order differential operator , and equation (4.35) a second-order PDE. Specifically, the problem

−Δ𝑢 = −𝑢𝑥𝑥 ( ̄𝑥) − 𝑢𝑦𝑦 ( ̄𝑥) = 𝑓 ( ̄𝑥) for ̄𝑥 ∈ Ω = [0, 1]2 with 𝑢( ̄𝑥) = 𝑢0 on 𝛿Ω. (4.40)

is called the Poisson equation, in this case defined on the unit square. The case of 𝑓 ≡ 0 is called the Laplace
equation. Second order PDEs are quite common, describing many phenomena in fluid and heat flow and
structural mechanics.

At first, for simplicity, we consider the one-dimensional Poisson equation

−𝑢𝑥𝑥 = 𝑓 (𝑥). (4.41)

We will consider the two-dimensional case below; the extension to three dimensions will then be clear.
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In order to find a numerical scheme we use Taylor series as before, expressing 𝑢(𝑥 + ℎ) and 𝑢(𝑥 − ℎ) in
terms of 𝑢 and its derivatives at 𝑥 . Let ℎ > 0, then

𝑢(𝑥 + ℎ) = 𝑢(𝑥) + 𝑢′(𝑥)ℎ + 𝑢″(𝑥)ℎ
2
2! + 𝑢‴(𝑥)ℎ

3
3! + 𝑢(4)(𝑥)ℎ

4
4! + 𝑢(5)(𝑥)ℎ

5
5! + ⋯ (4.42)

and

𝑢(𝑥 − ℎ) = 𝑢(𝑥) − 𝑢′(𝑥)ℎ + 𝑢″(𝑥)ℎ
2
2! − 𝑢‴(𝑥)ℎ

3
3! + 𝑢(4)(𝑥)ℎ

4
4! − 𝑢(5)(𝑥)ℎ

5
5! + ⋯ (4.43)

Our aim is now to approximate 𝑢″(𝑥). We see that the 𝑢′ terms in these equations would cancel out under
addition, leaving 2𝑢(𝑥):

𝑢(𝑥 + ℎ) + 𝑢(𝑥 − ℎ) = 2𝑢(𝑥) + 𝑢″(𝑥)ℎ2 + 𝑢(4)(𝑥)ℎ
4

12 + ⋯ (4.44)

so

−𝑢″(𝑥) = 2𝑢(𝑥) − 𝑢(𝑥 + ℎ) − 𝑢(𝑥 − ℎ)
ℎ2 + 𝑢(4)(𝑥)ℎ

2
12 + ⋯ (4.45)

The basis for a numerical scheme for (4.34) is then the observation

2𝑢(𝑥) − 𝑢(𝑥 + ℎ) − 𝑢(𝑥 − ℎ)
ℎ2 = 𝑓 (𝑥, 𝑢(𝑥), 𝑢′(𝑥)) + 𝑂(ℎ2), (4.46)

which shows that we can approximate the differential operator by a difference operator, with an 𝑂(ℎ2)
truncation error as ℎ ↓ 0.
To derive a numerical method, we divide the interval [0, 1] into equally spaced points: 𝑥𝑘 = 𝑘ℎ where
ℎ = 1/(𝑛 + 1) and 𝑘 = 0… 𝑛 + 1. With these, the Finite Difference (FD) formula (4.45) leads to a numerical
scheme that forms a system of equations:

−𝑢𝑘+1 + 2𝑢𝑘 − 𝑢𝑘−1 = ℎ2𝑓 (𝑥𝑘) for 𝑘 = 1, … , 𝑛 (4.47)

This process of using the FD formula (4.45) for the approximate solution of a PDE is known as the Finite
Difference Method (FDM).

For most values of 𝑘 this equation relates 𝑢𝑘 unknown to the unknowns 𝑢𝑘−1 and 𝑢𝑘+1. The exceptions
are 𝑘 = 1 and 𝑘 = 𝑛. In that case we recall that 𝑢0 and 𝑢𝑛+1 are known boundary conditions, and we write
the equations with unknowns on the left and known quantities on the right as

⎧
⎨
⎩

−𝑢𝑖−1 + 2𝑢𝑖 − 𝑢𝑖+1 = ℎ2𝑓 (𝑥𝑖)
2𝑢1 − 𝑢2 = ℎ2𝑓 (𝑥1) + 𝑢0
2𝑢𝑛 − 𝑢𝑛−1 = ℎ2𝑓 (𝑥𝑛) + 𝑢𝑛+1.

(4.48)

We can now summarize these equations for 𝑢𝑘 , 𝑘 = 1… 𝑛 − 1 as a matrix equation:

⎛
⎜
⎜
⎝

2 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑢1
𝑢2
⋮
𝑢𝑛

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

ℎ2𝑓1 + 𝑢0
ℎ2𝑓2
⋮

ℎ2𝑓𝑛 + 𝑢𝑛+1

⎞
⎟
⎟
⎠

(4.49)
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This has the form𝐴𝑢 = 𝑓 with𝐴 a fully knownmatrix, 𝑓 a fully known vector, and 𝑢 a vector of unknowns.
Note that the right hand side vector has the boundary values of the problem in the first and last locations.
This means that, if you want to solve the same differential equation with different boundary conditions,
only the vector 𝑓 changes.

Exercise 4.3. A condition of the type 𝑢(0) = 𝑢0 is called a Dirichlet boundary condition. Phys-
ically, this corresponds to, for instance, knowing the temperature at the end point of a
rod. Other boundary conditions exist. Specifying a value for the derivative, 𝑢′(0) = 𝑢′0,
rather than for the function value,would be appropriate if we are modeling fluid flow
and the outflow rate at 𝑥 = 0 is known. This is known as aNeumann boundary condition.
A Neumann boundary condition 𝑢′(0) = 𝑢′0 can be modeled by stating

𝑢0 − 𝑢1
ℎ = 𝑢′0. (4.50)

Show that, unlike in the case of the Dirichlet boundary condition, this affects the matrix
of the linear system.
Show that having a Neumann boundary condition at both ends gives a singular matrix,
and therefore no unique solution to the linear system. (Hint: guess the vector that has
eigenvalue zero.)
Physically this makes sense. For instance, in an elasticity problem, Dirichlet boundary
conditions state that the rod is clamped at a certain height; a Neumann boundary con-
dition only states its angle at the end points, which leaves its height undetermined.

Let us list some properties of 𝐴 that you will see later are relevant for solving such systems of equations:

• Thematrix is very sparse: the percentage of elements that is nonzero is low. The nonzero elements
are not randomly distributed but located in a band around themain diagonal.We call this a banded
matrix in general, and a tridiagonal matrix in this specific case.
The banded structure is typical for PDEs, but sparse matrices in different applications can be less
regular.

• The matrix is symmetric. This property does not hold for all matrices that come from discretizing
BVPs, but it is true if there are no odd order (meaning first, third, fifth,…) derivatives, such as 𝑢𝑥 ,
𝑢𝑥𝑥𝑥 , 𝑢𝑥𝑦 .

• Matrix elements are constant in each diagonal, that is, in each set of points {(𝑖, 𝑗)∶ 𝑖 − 𝑗 = 𝑐} for
some 𝑐. This is only true for very simple problems. It is no longer true if the differential equation
has location dependent terms such as 𝑑

𝑑𝑥 (𝑎(𝑥)
𝑑
𝑑𝑥 𝑢(𝑥)). It is also no longer true if we make ℎ

variable through the interval, for instance because we want to model behavior around the left
end point in more detail.

• Matrix elements conform to the following sign pattern: the diagonal elements are positive, and
the off-diagonal elements are nonpositive. This property depends on the numerical scheme used;
it is for instance true for second order schemes for second order equations without first order
terms. Together with the following property of definiteness, this is called an M-matrix. There is
a whole mathematical theory of these matrices [13].

• The matrix is positive definite: 𝑥 𝑡𝐴𝑥 > 0 for all nonzero vectors 𝑥 . This property is inherited
from the original continuous problem, if the numerical scheme is carefully chosen. While the
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use of this may not seem clear at the moment, later you will see methods for solving the linear
system that depend on it.

Strictly speaking the solution of equation (4.49) is simple: 𝑢 = 𝐴−1𝑓 . However, computing 𝐴−1 is not
the best way of finding 𝑢. As observed just now, the matrix 𝐴 has only 3𝑁 nonzero elements to store.
Its inverse, on the other hand, does not have a single nonzero. Although we will not prove it, this sort
of statement holds for most sparse matrices. Therefore, we want to solve 𝐴𝑢 = 𝑓 in a way that does not
require 𝑂(𝑛2) storage.
Exercise 4.4. How would you solve the tridiagonal system of equations? Show that the LU

factorization of the coefficient matrix gives factors that are of bidiagonal matrix form:
they have a nonzero diagonal and exactly one nonzero sub or super diagonal.
What is the total number of operations of solving the tridiagonal system of equations?
What is the operation count of multiplying a vector with such a matrix? This relation
is not typical!

4.2.3 The Laplace equation in two space dimensions

The one-dimensional BVP above was atypical in a number of ways, especially related to the resulting
linear algebra problem. In this section we will investigate the two-dimensional Poisson/Laplace prob-
lem. You’ll see that it constitutes a non-trivial generalization of the one-dimensional problem. The three-
dimensional case is very much like the two-dimensional case, so we will not discuss it. (For one essential
difference, see the discussion in section 6.8.1.)

The one-dimensional problem above had a function 𝑢 = 𝑢(𝑥), which now becomes 𝑢 = 𝑢(𝑥, 𝑦) in two
dimensions. The two-dimensional problem we are interested is then

−𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 𝑓 , (𝑥, 𝑦) ∈ [0, 1]2, (4.51)

where the values on the boundaries are given. We get our discrete equation by applying equation (4.45)
in 𝑥 and 𝑦 directions:

−𝑢𝑥𝑥 (𝑥, 𝑦) = 2𝑢(𝑥,𝑦)−𝑢(𝑥+ℎ,𝑦)−𝑢(𝑥−ℎ,𝑦)
ℎ2 + 𝑢(4)(𝑥, 𝑦) ℎ212 + ⋯

−𝑢𝑦𝑦 (𝑥, 𝑦) = 2𝑢(𝑥,𝑦)−𝑢(𝑥,𝑦+ℎ)−𝑢(𝑥,𝑦−ℎ)
ℎ2 + 𝑢(4)(𝑥, 𝑦) ℎ212 + ⋯ (4.52)

or, taken together:

4𝑢(𝑥, 𝑦) − 𝑢(𝑥 + ℎ, 𝑦) − 𝑢(𝑥 − ℎ, 𝑦) − 𝑢(𝑥, 𝑦 + ℎ) − 𝑢(𝑥, 𝑦 − ℎ) = 1/ℎ2 𝑓 (𝑥, 𝑦) + 𝑂(ℎ2) (4.53)

Let again ℎ = 1/(𝑛 + 1) and define 𝑥𝑖 = 𝑖ℎ and 𝑦𝑗 = 𝑗ℎ; let 𝑢𝑖𝑗 be the approximation to 𝑢(𝑥𝑖, 𝑦𝑗), then our
discrete equation becomes

4𝑢𝑖𝑗 − 𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1 = ℎ−2𝑓𝑖𝑗 . (4.54)

We now have 𝑛 × 𝑛 unknowns 𝑢𝑖𝑗 . To render this in a linear system as before we need to put them in a
linear ordering, which we do by defining 𝐼 = 𝐼𝑖𝑗 = 𝑗 + 𝑖 × 𝑛. This is called the lexicographic ordering since
it sorts the coordinates (𝑖, 𝑗) as if they are strings.

220 Introduction to High Performance Scientific Computing



4.2. Boundary value problems

Figure 4.1: A difference stencil applied to a two-dimensional square domain.

Using this ordering gives us 𝑁 = 𝑛2 equations

4𝑢𝐼 − 𝑢𝐼+1 − 𝑢𝐼−1 − 𝑢𝐼+𝑛 − 𝑢𝐼−𝑛 = ℎ−2𝑓𝐼 , 𝐼 = 1, … , 𝑁 (4.55)

and the linear system looks like

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 ∅ −1 ∅
−1 4 −1 −1

⋱ ⋱ ⋱ ⋱
⋱ ⋱ −1 ⋱

∅ −1 4 ∅ −1
−1 ∅ 4 −1 −1

−1 −1 4 −1 −1
↑ ⋱ ↑ ↑ ↑ ↑

𝑘 − 𝑛 𝑘 − 1 𝑘 𝑘 + 1 −1 𝑘 + 𝑛
−1 −1 4

⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.56)

where the matrix is of size 𝑁 × 𝑁 , with 𝑁 = 𝑛2. As in the one-dimensional case, we see that a BVP gives
rise to a sparse matrix.

It may seem the natural thing to consider this system of linear equations in its matrix form. However, it can
be more insightful to render these equations in a way that makes clear the two-dimensional connections
of the unknowns. For this, figure 4.1 pictures the variables in the domain, and how equation (4.54) relates
them through a finite difference stencil. (See section 4.2.4 for more on stencils.) From now on, whenmaking
such a picture of the domain, we will just use the indices of the variables, and omit the ‘𝑢’ identifier.
The matrix of equation 4.56 is banded as in the one-dimensional case, but unlike in the one-dimensional
case, there are zeros inside the band. (This has some important consequences when we try to solve the
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Figure 4.2: A triangular domain of definition for the Poisson equation.

linear system; see section 5.4.3.) Because the matrix has five nonzero diagonals, it is said to be of penta-
diagonal structure.

You can also put a block structure on the matrix, by grouping the unknowns together that are in one row
of the domain. This is called a block matrix, and, on the block level, it has a tridiagonal matrix structure,
so we call this a block tridiagonal matrix. Note that the diagonal blocks themselves are tridiagonal; the
off-diagonal blocks are minus the identity matrix.

This matrix, like the one-dimensional example above, has constant diagonals, but this is again due to the
simple nature of the problem. In practical problems it will not be true. That said, such ‘constant coefficient’
problems occur, and when they are on rectangular domains, there are very efficient methods for solving
the linear system with 𝑁 log𝑁 time complexity.

Exercise 4.5. The block structure of the matrix, with all diagonal blocks having the same size,
is due to the fact that we defined our BVP on a square domain. Sketch the matrix struc-
ture that arises from discretizing equation (4.51), again with central differences, but this
time defined on a triangular domain; see figure 4.2. Show that, again, there is a block
tridiagonal matrix structure, but that the blocks are now of varying sizes. Hint: start by
sketching a small example. For 𝑛 = 4 you should get a 10 × 10 matrix with a 4 × 4 block
structure.

For domains that are even more irregular, the matrix structure will also be irregular.

The regular block structure is also caused by our decision to order the unknowns by rows and columns.
This known as the natural ordering or lexicographic ordering; various other orderings are possible. One
common way of ordering the unknowns is the red-black ordering or checkerboard ordering which has
advantages for parallel computation. This will be discussed in section 6.7.

Remark 17 For this simple matrix it is possible to determine eigenvalue and eigenvectors by a Fourier
analysis. In more complicated cases, such as an operator ∇𝑎(𝑥, 𝑦)∇𝑥 , this is not possible, but the Gershgorin
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theorem will still tell us that the matrix is positive definite, or at least semi-definite. This corresponds to the
continuous problem being coercive.

There is more to say about analytical aspects of the BVP (for instance, how smooth is the solution and how
does that depend on the boundary conditions?) but those questions are outside the scope of this course.
Here we only focus on the numerical aspects of the matrices. In the chapter on linear algebra, specifically
sections 5.4 and 5.5, we will discuss solving the linear system from BVPs.

4.2.4 Difference stencils

The discretization (4.53) is often phrased as applying the difference stencil

⋅ −1 ⋅
−1 4 −1
⋅ −1 ⋅

(4.57)

to the function 𝑢. Given a physical domain, we apply the stencil to each point in that domain to derive
the equation for that point. Figure 4.1 illustrates that for a square domain of 𝑛 × 𝑛 points. Connecting this
figure with equation (4.56), you see that the connections in the same line give rise to the main diagonal
and first upper and lower offdiagonal; the connections to the next and previous lines become the nonzeros
in the off-diagonal blocks.

This particular stencil is often referred to as the ‘5-point star’ or five-point stencil. There are other differ-
ence stencils; the structure of some of them are depicted in figure 4.3. A stencil with only connections in

Figure 4.3: The structure of some difference stencils in two dimensions.

horizontal or vertical direction is called a ‘star stencil’, while one that has cross connections (such as the
second in figure 4.3) is called a ‘box stencil’.

Exercise 4.6. Consider the second and third stencil in figure 4.3, used for a BVP on a square
domain. What does the sparsity structure of the resulting matrix look like, if we again
order the variables by rows and columns?

Other stencils than the 5-point star can be used to attain higher accuracy, for instance giving a truncation
error of 𝑂(ℎ4). They can also be used for other differential equations than the one discussed above. For
instance, it is not hard to show that for the equation 𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑦𝑦𝑦𝑦 = 𝑓 we need a stencil that contains
both 𝑥, 𝑦 ±ℎ and 𝑥, 𝑦 ±2ℎ connections, such as the third stencil in the figure. Conversely, using the 5-point
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stencil no values of the coefficients give a discretization of the fourth order problem with less than 𝑂(1)
truncation error.

While the discussion so far has been about two-dimensional problems, it can be generalized to higher
dimensions for such equations as −𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝑢𝑧𝑧 = 𝑓 . The straightforward generalization of the 5-point
stencil, for instance, becomes a 7-point stencil in three dimensions.

Exercise 4.7. What does the matrix of of a central difference stencil in three dimensions look
like? Describe the block structure.

4.2.5 Other discretization techniques

In the above, we used the FDM to find a numerical solution to a differential equation. There are various
other techniques, and in fact, in the case of boundary value problems, they are usually preferred over finite
differences. The most popular methods are the FEM and the finite volume method. Especially the finite
element method is attractive, since it can handle irregular shapes more readily than finite differences,
and it is more amenable to approximation error analysis. However, on the simple problems discussed
here it gives similar or even the same linear systems as FD methods, so we limit the discussion to Finite
Differences, since we are mostly concerned with the computational aspects of the linear systems.

There will be a brief discussion of finite element matrices in section 6.6.2.

4.3 Initial boundary value problem

We will now go on to discuss an Initial Boundary Value Problem (IBVP), which, as you may deduce from
the name, combines aspects of IVPs and BVPs: they combine both a space and a time derivative. Here we
will limit ourselves to one space dimension.

The problemwe are considering is that of heat conduction in a rod, where 𝑇 (𝑥, 𝑡) describes the temperature
in location 𝑥 at time 𝑡 , for 𝑥 ∈ [𝑎, 𝑏], 𝑡 > 0. The so-called heat equation (see section 15.3 for a short
derivation) is:

𝜕
𝜕𝑡 𝑇 (𝑥, 𝑡) − 𝛼 𝜕2

𝜕𝑥2 𝑇 (𝑥, 𝑡) = 𝑞(𝑥, 𝑡) (4.58)

where

• The initial condition 𝑇 (𝑥, 0) = 𝑇0(𝑥) describes the initial temperature distribution.
• The boundary conditions 𝑇 (𝑎, 𝑡) = 𝑇𝑎(𝑡), 𝑇 (𝑏, 𝑡) = 𝑇𝑏(𝑡) describe the ends of the rod, which can
for instance be fixed to an object of a known temperature.

• The material the rod is made of is modeled by a single parameter 𝛼 > 0, the thermal diffusivity,
which describes how fast heat diffuses through the material.

• The forcing function 𝑞(𝑥, 𝑡) describes externally applied heating, as a function of both time and
place.

• The space derivative is the same operator we have studied before.
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There is a simple connection between the IBVP and the BVP: if the boundary functions 𝑇𝑎 and 𝑇𝑏 are
constant, and 𝑞 does not depend on time, only on location, then intuitively 𝑇 will converge to a steady
state. The equation for this is −𝛼𝑢″(𝑥) = 𝑞, which we studied above.

We will now proceed to discuss the heat equation in one space dimension. After the above discussion of
the Poisson equation in two and three dimensions, the extension of the heat equation to higher dimensions
should pose no particular problem.

4.3.1 Discretization

We now discretize both space and time, by 𝑥𝑗+1 = 𝑥𝑗 + Δ𝑥 and 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 , with boundary conditions
𝑥0 = 𝑎, 𝑥𝑛 = 𝑏, and 𝑡0 = 0. We write 𝑇 𝑘𝑗 for the numerical solution at 𝑥 = 𝑥𝑗 , 𝑡 = 𝑡𝑘 ; with a little luck, this
will approximate the exact solution 𝑇 (𝑥𝑗 , 𝑡𝑘).
For the space discretization we use the central difference formula (4.47):

𝜕2
𝜕𝑥2 𝑇 (𝑥, 𝑡𝑘)|𝑥=𝑥𝑗

⇒
𝑇 𝑘𝑗−1 − 2𝑇 𝑘𝑗 + 𝑇 𝑘𝑗+1

Δ𝑥2 . (4.59)

For the time discretization we can use any of the schemes in section 4.1.2. We will investigate again the
explicit and implicit schemes, with similar conclusions about the resulting stability.

4.3.1.1 Explicit scheme

Figure 4.4: The difference stencil of the
Euler forward method for the heat equa-
tion.
.

With explicit time stepping we approximate the time deriva-
tive as

𝜕
𝜕𝑡 𝑇 (𝑥𝑗 , 𝑡)|𝑡=𝑡𝑘

⇒
𝑇 𝑘+1𝑗 − 𝑇 𝑘𝑗

Δ𝑡 . (4.60)

Taking this together with the central differences in space, we
now have

𝑇 𝑘+1𝑗 − 𝑇 𝑘𝑗
Δ𝑡 − 𝛼

𝑇 𝑘𝑗−1 − 2𝑇 𝑘𝑗 + 𝑇 𝑘𝑗+1
Δ𝑥2 = 𝑞𝑘𝑗 (4.61)

which we rewrite as

𝑇 𝑘+1𝑗 = 𝑇 𝑘𝑗 + 𝛼Δ𝑡
Δ𝑥2 (𝑇

𝑘𝑗−1 − 2𝑇 𝑘𝑗 + 𝑇 𝑘𝑗+1) + Δ𝑡𝑞𝑘𝑗 (4.62)

Pictorially, we render this as a difference stencil in figure 4.4. This expresses that the function value in
each point is determined by a combination of points on the previous time level.

It is convenient to summarize the set of equations (4.62) for a given 𝑘 and all values of 𝑗 in vector form as

𝑇 𝑘+1 = (𝐼 − 𝛼Δ𝑡
Δ𝑥2𝐾) 𝑇 𝑘 + Δ𝑡𝑞𝑘 (4.63)
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where

𝐾 = (
2 −1
−1 2 −1

⋱ ⋱ ⋱
) , 𝑇 𝑘 = (

𝑇 𝑘1
⋮
𝑇 𝑘𝑛

) . (4.64)

The important observation here is that the dominant computation for deriving the vector 𝑇 𝑘+1 from 𝑇 𝑘
is a simple matrix-vector multiplication:

𝑇 𝑘+1 ← 𝐴𝑇 𝑘 + Δ𝑡𝑞𝑘 (4.65)

where 𝐴 = 𝐼 − 𝛼Δ𝑡
Δ𝑥2𝐾 . This is a first indication that the sparse matrix-vector product is an important

operation; see sections 5.4 and 6.5. Actual computer programs using an explicit method often do not
form the matrix, but evaluate the equation (4.62). However, the linear algebra formulation (4.63) is more
insightful for purposes of analysis.

In later chapters we will consider parallel execution of operations. For now, we note that the explicit
scheme is trivially parallel: each point can be updated with just the information of a few surrounding
points.

4.3.1.2 Implicit scheme

In equation (4.60) we let 𝑇 𝑘+1 be defined from 𝑇 𝑘 . We can turn this around by defining 𝑇 𝑘 from 𝑇 𝑘−1, as
we did for the IVP in section 4.1.2.2. For the time discretization this gives

𝜕
𝜕𝑡 𝑇 (𝑥, 𝑡)|𝑡=𝑡𝑘

⇒
𝑇 𝑘𝑗 − 𝑇 𝑘−1𝑗

Δ𝑡 or 𝜕
𝜕𝑡 𝑇 (𝑥, 𝑡)|𝑡=𝑡𝑘+1

⇒
𝑇 𝑘+1𝑗 − 𝑇 𝑘𝑗

Δ𝑡 . (4.66)

Figure 4.5: The difference stencil of the
Euler backward method for the heat
equation.
.

The implicit time step discretization of the whole heat equa-
tion, evaluated in 𝑡𝑘+1, now becomes:

𝑇 𝑘+1𝑗 − 𝑇 𝑘𝑗
Δ𝑡 − 𝛼

𝑇 𝑘+1𝑗−1 − 2𝑇 𝑘+1𝑗 + 𝑇 𝑘+1𝑗+1
Δ𝑥2 = 𝑞𝑘+1𝑗 (4.67)

or

𝑇 𝑘+1𝑗 − 𝛼Δ𝑡
Δ𝑥2 (𝑇

𝑘+1𝑗−1 − 2𝑇 𝑘+1𝑗 + 𝑇 𝑘+1𝑗+1 ) = 𝑇 𝑘𝑗 +Δ𝑡𝑞𝑘+1𝑗 (4.68)

Figure 4.5 renders this as a stencil; this expresses that each
point on the current time level influences a combination of
points on the next level. Again we write this in vector form:

(𝐼 + 𝛼Δ𝑡
Δ𝑥2𝐾) 𝑇 𝑘+1 = 𝑇 𝑘 + Δ𝑡𝑞𝑘+1 (4.69)

As opposed to the explicit method, where a matrix-vector multiplication sufficed, the derivation of the
vector 𝑇 𝑘+1 from 𝑇 𝑘 now involves a linear system solution:

𝑇 𝑘+1 ← 𝐴−1(𝑇 𝑘 + Δ𝑡𝑞𝑘+1) (4.70)
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where𝐴 = 𝐼+ 𝛼Δ𝑡
Δ𝑥2𝐾 . Solving this linear system is a harder operation than thematrix-vectormultiplication.

Unlike what equation (4.70) suggests, codes using an implicit method do not actually form the inverse
matrix, but rather solve the system (4.69) as such. Solving linear systems will be the focus of much of
chapters 5 and 6.

In contrast to the explicit scheme, we now have no obvious parallelization strategy. The parallel solution
of linear systems will occupy us in sections 6.6 and on.

Exercise 4.8. Show that the flop count for a time step of the implicit method is of the same
order as of a time step of the explicit method. (This only holds for a problem with one
space dimension.) Give at least one argument why we consider the implicit method as
computationally ‘harder’.

The numerical scheme that we used here is of first order in time and second order in space: the truncation
error (section 4.1.2) is 𝑂(Δ𝑡 + Δ𝑥2). It would be possible to use a scheme that is second order in time by
using central differences in time too. Alternatively, see exercise 4.10.

4.3.2 Stability analysis

We now analyze the stability of the explicit and implicit schemes for the IBVP in a simple case. The
discussion will partly mirror that of sections 4.1.2.1 and 4.1.2.3, but with some complexity added because
of the space component.

Let 𝑞 ≡ 0, and assume 𝑇 𝑘𝑗 = 𝛽𝑘𝑒𝑖ℓ𝑥𝑗 for some ℓ1 . This assumption is intuitively defensible: since the
differential equation does not ‘mix’ the 𝑥 and 𝑡 coordinates, we surmise that the solution will be a product
𝑇 (𝑥, 𝑡) = 𝑣(𝑥) ⋅ 𝑤(𝑡) of the separate solutions of

{𝑣𝑥𝑥 = 𝑐1𝑣 , 𝑣(0) = 0, 𝑣(1) = 0
𝑤𝑡 = 𝑐2𝑤 𝑤(0) = 1 (4.71)

The only meaningful solution occurs with 𝑐1, 𝑐2 < 0, in which case we find:

𝑣𝑥𝑥 = −𝑐2𝑣 ⇒ 𝑣(𝑥) = 𝑒−𝑖𝑐𝑥 = 𝑒−𝑖ℓ𝜋𝑥 (4.72)

where we substitute 𝑐 = ℓ𝜋 to take boundary conditions into account, and

𝑤(𝑡) = 𝑒−𝑐𝑡 = 𝑒−𝑐𝑘Δ𝑡 = 𝛽𝑘 , 𝛽 = 𝑒−𝑐𝑘 . (4.73)

If the assumption on this form of the solution holds up, we need |𝛽| < 1 for stability.

1. Actually, 𝛽 is also dependent on ℓ, but we will save ourselves a bunch of subscripts, since different 𝛽 values never appear
together in one formula.
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Substituting the surmised form for 𝑇 𝑘𝑗 into the explicit scheme gives

𝑇 𝑘+1𝑗 = 𝑇 𝑘𝑗 + 𝛼Δ𝑡
Δ𝑥2 (𝑇

𝑘𝑗−1 − 2𝑇 𝑘𝑗 + 𝑇 𝑘𝑗+1)

⇒ 𝛽𝑘+1𝑒𝑖ℓ𝑥𝑗 = 𝛽𝑘𝑒𝑖ℓ𝑥𝑗 + 𝛼Δ𝑡
Δ𝑥2 (𝛽

𝑘𝑒𝑖ℓ𝑥𝑗−1 − 2𝛽𝑘𝑒𝑖ℓ𝑥𝑗 + 𝛽𝑘𝑒𝑖ℓ𝑥𝑗+1)

= 𝛽𝑘𝑒𝑖ℓ𝑥𝑗 [1 + 𝛼Δ𝑡
Δ𝑥2 [𝑒−𝑖ℓΔ𝑥 − 2 + 𝑒𝑖ℓΔ𝑥]]

⇒ 𝛽 = 1 + 2 𝛼Δ𝑡Δ𝑥2 [
1
2(𝑒

𝑖ℓΔ𝑥 + 𝑒−ℓΔ𝑥 ) − 1]

= 1 + 2 𝛼Δ𝑡Δ𝑥2 (cos(ℓΔ𝑥) − 1)

For stability we need |𝛽| < 1:
• 𝛽 < 1 ⇔ 2 𝛼Δ𝑡

Δ𝑥2 (cos(ℓΔ𝑥) − 1) < 0: this is true for any ℓ and any choice of Δ𝑥, Δ𝑡 .
• 𝛽 > −1 ⇔ 2 𝛼Δ𝑡

Δ𝑥2 (cos(ℓΔ𝑥) − 1) > −2: this is true for all ℓ only if 2 𝛼Δ𝑡
Δ𝑥2 < 1, that is

Δ𝑡 < Δ𝑥2
2𝛼 (4.74)

The latter condition poses a big restriction on the allowable size of the time steps: time steps have to be
small enough for the method to be stable. This is similar to the stability analysis of the explicit method
for the IVP; however, now the time step is also related to the space discretization. This implies that, if
we decide we need more accuracy in space and we halve the space discretization Δ𝑥 , the number of time
steps will be multiplied by four.

Let us now consider the stability of the implicit scheme. Substituting the form of the solution 𝑇 𝑘𝑗 = 𝛽𝑘𝑒𝑖ℓ𝑥𝑗
into the numerical scheme gives

𝑇 𝑘+1𝑗 − 𝑇 𝑘𝑗 = 𝛼Δ𝑡
Δ𝑥2 (𝑇

𝑘+1𝑗1 − 2𝑇 𝑘+1𝑗 + 𝑇 𝑘+1𝑗+1 )

⇒ 𝛽𝑘+1𝑒𝑖ℓΔ𝑥 − 𝛽𝑘𝑒𝑖ℓ𝑥𝑗 = 𝛼Δ𝑡
Δ𝑥2 (𝛽

𝑘+1𝑒𝑖ℓ𝑥𝑗−1 − 2𝛽𝑘+1𝑒𝑖ℓ𝑥𝑗 + 𝛽𝑘+1𝑒𝑖ℓ𝑥𝑗+1)
Dividing out 𝑒𝑖ℓ𝑥𝑗𝛽𝑘+1 gives

1 = 𝛽−1 + 2𝛼 Δ𝑡
Δ𝑥2 (cos ℓΔ𝑥 − 1)

𝛽 = 1
1 + 2𝛼 Δ𝑡

Δ𝑥2 (1 − cos ℓΔ𝑥)
Since 1 − cos ℓΔ𝑥 ∈ (0, 2), the denominator is strictly > 1. Therefore the condition |𝛽| < 1 is always
satisfied, regardless the value of ℓ and the choices of Δ𝑥 and Δ𝑡 : the method is always stable.

Exercise 4.9. Generalize this analysis to two and three space dimensions. Does anything change
qualitatively?

Exercise 4.10. The schemes we considered here are of first order in time and second order in
space: their discretization order are 𝑂(Δ𝑡) + 𝑂(Δ𝑥2). Derive the Crank-Nicolson method
that is obtained by averaging the explicit and implicit schemes, show that it is uncondi-
tionally stable, and of second order in time.

228 Introduction to High Performance Scientific Computing



Chapter 5

Numerical linear algebra

In chapter 4 you saw how the numerical solution of partial differential equations can lead to linear al-
gebra problems. Sometimes this is a simple problem – a matrix-vector multiplication in the case of the
Euler forward method – but sometimes it is more complicated, such as the solution of a system of linear
equations in the case of Euler backward methods. Solving linear systems will be the focus of this chapter;
in other applications, which we will not discuss here, eigenvalue problems need to be solved.

Youmay have learned a simple algorithm for solving system of linear equations: elimination of unknowns,
also called Gaussian elimination. This method can still be used, but we need some careful discussion of
its efficiency. There are also other algorithms, the so-called iterative solution methods, which proceed by
gradually approximating the solution of the linear system. They warrant some discussion of their own.

Because of the PDE background, we only consider linear systems that are square and nonsingular. Rect-
angular, in particular overdetermined, systems have important applications too in a corner of numerical
analysis known as optimization theory. However, we will not cover that in this book.

The standard work on numerical linear algebra computations is Golub and Van Loan’s Matrix Computa-
tions [80]. It covers algorithms, error analysis, and computational details. Heath’s Scientific Computing [97]
covers the most common types of computations that arise in scientific computing; this book has many
excellent exercises and practical projects.

5.1 Elimination of unknowns

In this section we are going to take a closer look at Gaussian elimination, or elimination of unknowns,
one of the techniques used to solve a linear system

𝐴𝑥 = 𝑏

for 𝑥 , given a coefficient matrix 𝐴 and a known right hand side 𝑏. You may have seen this method before
(and if not, it will be explained below), but we will be a bit more systematic here so that we can analyze
various aspects of it.
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Remark 18 It is also possible to solve the equation 𝐴𝑥 = 𝑦 for 𝑥 by computing the inverse matrix 𝐴−1, for
instance by executing the Gauss Jordan algorithm, and multiplying 𝑥 ← 𝐴−1𝑥 . The reasons for not doing
this are primarily of numerical precision, and fall outside the scope of this book.

One general thread of this chapter will be the discussion of the efficiency of the various algorithms. If you
have already learned in a basic linear algebra course how to solve a system of unknowns by gradually
eliminating unknowns, you most likely never applied that method to a matrix larger than 4×4. The linear
systems that occur in PDE solving can be thousands of times larger, and counting how many operations
they require, as well as how much memory, becomes important.

Let us consider an example of the importance of efficiency in choosing the right algorithm. The solution
of a linear system can be written with a fairly simple explicit formula, using determinants. This is called
‘Cramer’s rule’. It is mathematically elegant, but completely impractical for our purposes.

If a matrix 𝐴 and a vector 𝑏 are given, and a vector 𝑥 satisfying 𝐴𝑥 = 𝑏 is wanted, then, writing |𝐴| for the
determinant,

𝑥𝑖 =
||||||

𝑎11 𝑎12 … 𝑎1𝑖−1 𝑏1 𝑎1𝑖+1 … 𝑎1𝑛
𝑎21 … 𝑏2 … 𝑎2𝑛
⋮ ⋮ ⋮

𝑎𝑛1 … 𝑏𝑛 … 𝑎𝑛𝑛

||||||
/|𝐴|

For any matrix 𝑀 the determinant is defined recursively as

|𝑀| = ∑
𝑖
(−1)𝑖𝑚1𝑖|𝑀 [1,𝑖]|

where 𝑀 [1,𝑖] denotes the matrix obtained by deleting row 1 and column 𝑖 from 𝑀 . This means that com-
puting the determinant of a matrix of dimension 𝑛 means 𝑛 times computing a size 𝑛−1 determinant. Each
of these requires 𝑛 − 1 determinants of size 𝑛 − 2, so you see that the number of operations required to
compute the determinant is factorial in the matrix size. This quickly becomes prohibitive, even ignoring
any issues of numerical stability. Later in this chapter you will see complexity estimates for other methods
of solving systems of linear equations that are considerably more reasonable.

Let us now look at a simple example of solving linear equations with elimination of unknowns. Consider
the system

6𝑥1 −2𝑥2 +2𝑥3 = 16
12𝑥1 −8𝑥2 +6𝑥3 = 26
3𝑥1 −13𝑥2 +3𝑥3 = −19

(5.1)

We eliminate 𝑥1 from the second and third equation by
• multiplying the first equation ×2 and subtracting the result from the second equation, and
• multiplying the first equation ×1/2 and subtracting the result from the third equation.

The linear system then becomes

6𝑥1 −2𝑥2 +2𝑥3 = 16
0𝑥1 −4𝑥2 +2𝑥3 = −6
0𝑥1 −12𝑥2 +2𝑥3 = −27
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Finally, we eliminate 𝑥2 from the third equation by multiplying the second equation by 3, and subtracting
the result from the third equation:

6𝑥1 −2𝑥2 +2𝑥3 = 16
0𝑥1 −4𝑥2 +2𝑥3 = −6
0𝑥1 +0𝑥2 −4𝑥3 = −9

We can now solve 𝑥3 = 9/4 from the last equation. Substituting that in the second equation, we get−4𝑥2 =
−6−2𝑥2 = −21/2 so 𝑥2 = 21/8. Finally, from the first equation 6𝑥1 = 16+2𝑥2−2𝑥3 = 16+21/4−9/2 = 76/4
so 𝑥1 = 19/6.
We can write this more compactly by omitting the 𝑥𝑖 coefficients. Write

(
6 −2 2
12 −8 6
3 −13 3

)(
𝑥1
𝑥2
𝑥3

) = (
16
26
−19

)

as

[
6 −2 2 | 16
12 −8 6 | 26
3 −13 3 | −19

] (5.2)

then the elimination process is

[
6 −2 2 | 16
12 −8 6 | 26
3 −13 3 | −19

] ⟶ [
6 −2 2 | 16
0 −4 2 | −6
0 −12 2 | −27

] ⟶ [
6 −2 2 | 16
0 −4 2 | −6
0 0 −4 | −9

] .

In the above example, the matrix coefficients could have been any real (or, for that matter, complex) coef-
ficients, and you could follow the elimination procedure mechanically. There is the following exception.
At some point in the computation, we divided by the numbers 6, −4, −4 which are found on the diago-
nal of the matrix in the last elimination step. These quantities are called the pivots, and clearly they are
required to be nonzero.
Exercise 5.1. The system

6𝑥1 −2𝑥2 +2𝑥3 = 16
12𝑥1 −4𝑥2 +6𝑥3 = 26
3𝑥1 −13𝑥2 +3𝑥3 = −19

is the same as the one we just investigated in equation (5.1), except for the (2, 2) element.
Confirm that you get a zero pivot in the second step.

The first pivot is an element of the original matrix. As you saw in the preceding exercise, the other pivots
can not be found without doing the actual elimination. In particular, there is no easy way of predicting
zero pivots from looking at the system of equations.

If a pivot turns out to be zero, all is not lost for the computation: we can always exchange twomatrix rows;
this is known as pivoting. It is not hard to show (and you can find this in any elementary linear algebra
textbook) that with a nonsingular matrix there is always a row exchange possible that puts a nonzero
element in the pivot location.
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Exercise 5.2. Suppose you want to exchange matrix rows 2 and 3 of the system of equations in
equation (5.2). What other adjustments would you have to make to make sure you still
compute the correct solution? Continue the system solution of the previous exercise by
exchanging rows 2 and 3, and check that you get the correct answer.

Exercise 5.3. Take another look at exercise 5.1. Instead of exchanging rows 2 and 3, exchange
columns 2 and 3. What does this mean in terms of the linear system? Continue the
process of solving the system; check that you get the same solution as before.

In general, with floating point numbers and round-off, it is very unlikely that amatrix element will become
exactly zero during a computation. Also, in a PDE context, the diagonal is usually nonzero. Does that mean
that pivoting is in practice almost never necessary? The answer is no: pivoting is desirable from a point
of view of numerical stability. In the next section you will see an example that illustrates this fact.

5.2 Linear algebra in computer arithmetic

In most of this chapter, we will act as if all operations can be done in exact arithmetic. However, it is good
to become aware of some of the potential problems due to our finite precision computer arithmetic. This
allows us to design algorithms that minimize the effect of roundoff. A more rigorous approach to the topic
of numerical linear algebra includes a full-fledged error analysis of the algorithms we discuss; however,
that is beyond the scope of this course. Error analysis of computations in computer arithmetic is the focus
of Wilkinson’s classic Rounding errors in Algebraic Processes [192] and Higham’s more recent Accuracy
and Stability of Numerical Algorithms [104].

Here, we will only note a few paradigmatic examples of the sort of problems that can come up in computer
arithmetic: we will show why pivoting during LU factorization is more than a theoretical device, and we
will give two examples of problems in eigenvalue calculations due to the finite precision of computer
arithmetic.

5.2.1 Roundoff control during elimination

Above, you saw that row interchanging (‘pivoting’) is necessary if a zero element appears on the diagonal
during elimination of that row and column. Let us now look at what happens if the pivot element is not
zero, but close to zero.

Consider the linear system

(𝜖 1
1 1) 𝑥 = (1 + 𝜖

2 )

which has the solution solution 𝑥 = (1, 1)𝑡 . Using the (1, 1) element to clear the remainder of the first
column gives:

(𝜖 1
0 1 − 1

𝜖
) 𝑥 = ( 1 + 𝜖

2 − 1+𝜖
𝜖

) = (1 + 𝜖
1 − 1

𝜖
) .
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We can now solve 𝑥2 and from it 𝑥1:

{ 𝑥2 = (1 − 𝜖−1)/(1 − 𝜖−1) = 1
𝑥1 = 𝜖−1(1 + 𝜖 − 𝑥2) = 1.

If 𝜖 is small, say 𝜖 < 𝜖mach, the 1 + 𝜖 term in the right hand side will be 1: our linear system will be

(𝜖 1
1 1) 𝑥 = (12)

but the solution (1, 1)𝑡 will still satisfy the system in machine arithmetic.

In the first elimination step, 1/𝜖 will be very large, so the second component of the right hand side after
elimination will be 2 − 1

𝜖 = −1/𝜖, and the (2, 2) element of the matrix is then −1/𝜖 instead of 1 − 1/𝜖:

(𝜖 1
0 1 − 𝜖−1) 𝑥 = ( 1

2 − 𝜖−1) ⇒ (𝜖 1
0 −𝜖−1) 𝑥 = ( 1

−𝜖−1)

Solving first 𝑥2, then 𝑥1, we get:

{ 𝑥2 = 𝜖−1/𝜖−1 = 1
𝑥1 = 𝜖−1(1 − 1 ⋅ 𝑥2) = 𝜖−1 ⋅ 0 = 0,

so 𝑥2 is correct, but 𝑥1 is completely wrong.

Remark 19 In this example, the numbers of the stated problem are, in computer arithmetic, little off from
what they would be in exact arithmetic. Yet the results of the computation can be very much wrong. An
analysis of this phenomenon belongs in any good course in numerical analysis. See for instance chapter 1
of [97].

What would have happened if we had pivoted as described above? We exchange the matrix rows, giving

(1 1
𝜖 1) 𝑥 = ( 2

1 + 𝜖) ⇒ (1 1
0 1 − 𝜖) 𝑥 = ( 2

1 − 𝜖)

Now we get, regardless the size of epsilon:

𝑥2 = 1 − 𝜖
1 − 𝜖 = 1, 𝑥1 = 2 − 𝑥2 = 1

In this example we used a very small value of 𝜖; a much more refined analysis shows that even with 𝜖
greater than the machine precision pivoting still makes sense. The general rule of thumb is: Always do
row exchanges to get the largest remaining element in the current column into the pivot position. In chapter 4
you saw matrices that arise in certain practical applications; it can be shown that for them pivoting is
never necessary; see exercise 5.14.

The pivoting that was discussed above is also known as partial pivoting, since it is based on row exchanges
only. Another option would be full pivoting, where row and column exchanges are combined to find
the largest element in the remaining subblock, to be used as pivot. Finally, diagonal pivoting applies the
same exchange to rows and columns. (This is equivalent to renumbering the unknowns of the problem,
a strategy which we will consider in section 6.8 for increasing the parallelism of the problem.) This means
that pivots are only searched on the diagonal. From now on we will only consider partial pivoting.
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5.2.2 Influence of roundoff on eigenvalue computations

Consider the matrix

𝐴 = (1 𝜖
𝜖 1)

where 𝜖mach < |𝜖| < √𝜖mach, which has eigenvalues 1 + 𝜖 and 1 − 𝜖. If we calculate its characteristic
polynomial in computer arithmetic

|1 − 𝜆 𝜖
𝜖 1 − 𝜆| = 𝜆2 − 2𝜆 + (1 − 𝜖2) → 𝜆2 − 2𝜆 + 1.

we find a double eigenvalue 1. Note that the exact eigenvalues are expressible in working precision; it is
the algorithm that causes the error. Clearly, using the characteristic polynomial is not the right way to
compute eigenvalues, even in well-behaved, symmetric positive definite, matrices.

An unsymmetric example: let 𝐴 be the matrix of size 20

𝐴 =
⎛
⎜
⎜
⎜
⎝

20 20 ∅
19 20

⋱ ⋱
2 20

∅ 1

⎞
⎟
⎟
⎟
⎠

.

Since this is a triangular matrix, its eigenvalues are the diagonal elements. If we perturb this matrix by
setting 𝐴20,1 = 10−6 we find a perturbation in the eigenvalues that is much larger than in the elements:

𝜆 = 20.6 ± 1.9𝑖, 20.0 ± 3.8𝑖, 21.2, 16.6 ± 5.4𝑖, …
Also, several of the computed eigenvalues have an imaginary component, which the exact eigenvalues do
not have.

5.3 LU factorization
So far, we have looked at eliminating unknowns in the context of solving a single system of linear equa-
tions, where we updated the right hand side while reducing the matrix to upper triangular form. Suppose
you need to solve more than one system with the same matrix, but with different right hand sides. This
happens for instance if you take multiple time steps in an implicit Euler method (section 4.1.2.2). Can you
use any of the work you did in the first system to make solving subsequent ones easier?

The answer is yes. You can split the solution process in a part that only concerns the matrix, and a part
that is specific to the right hand side. If you have a series of systems to solve, you have to do the first part
only once, and, luckily, that even turns out to be the larger part of the work.

Let us take a look at the same example of section 5.1 again.

𝐴 = (
6 −2 2
12 −8 6
3 −13 3

)
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In the elimination process, we took the 2nd row minus 2× the first and the 3rd row minus 1/2× the first.
Convince yourself that this combining of rows can be done by multiplying 𝐴 from the left by

𝐿1 = (
1 0 0
−2 1 0

−1/2 0 1
) ,

which is the identity with the elimination coefficients in the first column, below the diagonal. The first
step in elimination of variables is equivalent to transforming the system 𝐴𝑥 = 𝑏 to 𝐿1𝐴𝑥 = 𝐿1𝑏.
Exercise 5.4. Can you find a different 𝐿1 that also has the effect of sweeping the first column?

Questions of uniqueness are addressed below in section 5.3.2.

In the next step, you subtracted 3× the second row from the third. Convince yourself that this corresponds
to left-multiplying the current matrix 𝐿1𝐴 by

𝐿2 = (
1 0 0
0 1 0
0 −3 1

)

We have now transformed our system 𝐴𝑥 = 𝑏 into 𝐿2𝐿1𝐴𝑥 = 𝐿2𝐿1𝑏, and 𝐿2𝐿1𝐴 is of ‘upper triangular’
form. If we define 𝑈 = 𝐿2𝐿1𝐴, then 𝐴 = 𝐿−11 𝐿−12 𝑈 . How hard is it to compute matrices such as 𝐿−12 ?
Remarkably easy, it turns out to be.

We make the following observations:

𝐿1 = (
1 0 0
−2 1 0

−1/2 0 1
) 𝐿−11 = (

1 0 0
2 1 0

1/2 0 1
)

and likewise

𝐿2 = (
1 0 0
0 1 0
0 −3 1

) 𝐿−12 = (
1 0 0
0 1 0
0 3 1

)

and even more remarkable:

𝐿−11 𝐿−12 = (
1 0 0
2 1 0

1/2 3 1
) ,

that is, 𝐿−11 𝐿−12 contains the off-diagonal elements of 𝐿−11 , 𝐿−12 unchanged, and they in turn contain the
elimination coefficients, with only the sign flipped. (This is a special case ofHouseholder reflectors; see 13.6.)
Exercise 5.5. Show that a similar statement holds, even if there are elements above the diago-

nal.

If we define 𝐿 = 𝐿−11 𝐿−12 , we now have 𝐴 = 𝐿𝑈 ; this is called an LU factorization. We see that the coeffi-
cients of 𝐿 below the diagonal are the negative of the coefficients used during elimination. Even better,
the first column of 𝐿 can be written while the first column of 𝐴 is being eliminated, so the computation
of 𝐿 and 𝑈 can be done without extra storage, at least if we can afford to lose 𝐴.
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5.3.1 The LU factorization algorithm

Let us write out the 𝐿𝑈 factorization algorithm in more or less formal code.

⟨𝐿𝑈 factorization⟩:
for 𝑘 = 1, 𝑛 − 1:

⟨eliminate values in column 𝑘⟩
⟨eliminate values in column 𝑘⟩:

for 𝑖 = 𝑘 + 1 to 𝑛:
⟨compute multiplier for row 𝑖⟩
⟨update row 𝑖⟩

⟨compute multiplier for row 𝑖⟩
𝑎𝑖𝑘 ← 𝑎𝑖𝑘/𝑎𝑘𝑘

⟨update row 𝑖⟩:
for 𝑗 = 𝑘 + 1 to 𝑛:

𝑎𝑖𝑗 ← 𝑎𝑖𝑗 − 𝑎𝑖𝑘 ∗ 𝑎𝑘𝑗
Or, putting everything together in figure 5.1.

⟨𝐿𝑈 factorization⟩:
for 𝑘 = 1, 𝑛 − 1:

for 𝑖 = 𝑘 + 1 to 𝑛:
𝑎𝑖𝑘 ← 𝑎𝑖𝑘/𝑎𝑘𝑘
for 𝑗 = 𝑘 + 1 to 𝑛:

𝑎𝑖𝑗 ← 𝑎𝑖𝑗 − 𝑎𝑖𝑘 ∗ 𝑎𝑘𝑗
Figure 5.1: LU factorization algorithm

This is the most common way of presenting the LU factorization. However, other ways of computing
the same result exist. Algorithms such as the LU factorization can be coded in several ways that are
mathematically equivalent, but that have different computational behavior. This issue, in the context of
dense matrices, is the focus of van de Geijn and Quintana’s The Science of Programming Matrix Computa-
tions [183].

5.3.1.1 Computational variants

The above algorithm is only one of a several ways of computing the 𝐴 = 𝐿𝑈 result. That particular
formulation was derived by formalizing the process of row elimination. A different algorithm results by
looking at the finished result and writing elements 𝑎𝑖𝑗 in term of elements of 𝐿 and 𝑈 .

In particular, let 𝑗 ≥ 𝑘, then
𝑎𝑘𝑗 = 𝑢𝑘𝑗 + ∑

𝑖<𝑘
ℓ𝑘𝑖𝑢𝑖𝑗 ,

which gives us the row 𝑢𝑘𝑗 (for 𝑗 ≥ 𝑘) expressed in terms of earlier computed 𝑈 terms:

∀𝑗≥𝑘 ∶ 𝑢𝑘𝑗 = 𝑎𝑘𝑗 − ∑
𝑖<𝑘

ℓ𝑘𝑖𝑢𝑖𝑗 . (5.3)
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Similarly, with 𝑖 > 𝑘,

𝑎𝑖𝑘 = ℓ𝑖𝑘𝑢𝑘𝑘 + ∑
𝑗<𝑘

ℓ𝑖𝑗𝑢𝑗𝑘

which gives us the column ℓ𝑖𝑘 (for 𝑖 > 𝑘) as

∀𝑖>𝑘 ∶ ℓ𝑖𝑘 = 𝑢−1𝑘𝑘 (𝑎𝑖𝑘 − ∑
𝑗<𝑘

ℓ𝑖𝑗𝑢𝑗𝑘). (5.4)

(This is known as Doolittle’s algorithm for the LU factorization.)

In a classical analysis, this algorithm does the same number of operations, but a computational analysis
shows differences. For instance, the prior algorithm would update for each 𝑘 value the block 𝑖, 𝑗 > 𝑘,
meaning that these elements are repeatedly read and written. This makes it hard to keep these elements
in cache.

On the other hand, Doolittle’s algorithm computes for each 𝑘 only one row of 𝑈 and one column of 𝐿. The
elements used for this are only read, so they can conceivably be kept in cache.

Another difference appears if we think about parallel execution. Imagine that after computing a pivot in
the first algorithm, we compute the next pivot as quickly as possible, and let some other threads do the
updating of the 𝑖, 𝑗 > 𝑘 block. Now we can have potentially several threads all updating the remaining
block, which requires synchronization. (This argument will be presented in more detail in section 6.12.)

The new algorithm, on the other hand, has no such conflicting writes: sufficient parallelism can be ob-
tained from the computation of the row of 𝑈 and column of 𝐿.

5.3.1.2 The Cholesky factorization

The 𝐿𝑈 factorization of a symmetric matrix does not give an 𝐿 and 𝑈 that are each other’s transpose: 𝐿 has
ones on the diagonal and 𝑈 has the pivots. However it is possible to make a factorization of a symmetric
matrix 𝐴 of the form 𝐴 = 𝐿𝐿𝑡 . This has the advantage that the factorization takes the same amount of
space as the original matrix, namely 𝑛(𝑛 + 1)/2 elements. We a little luck we can, just as in the 𝐿𝑈 case,
overwrite the matrix with the factorization.

We derive this algorithm by reasoning inductively. Let us write 𝐴 = 𝐿𝐿𝑡 on block form:

𝐴 = (𝐴11 𝐴𝑡21
𝐴21 𝐴22

) = 𝐿𝐿𝑡 = (ℓ11 0
ℓ21 𝐿22) (ℓ11 ℓ𝑡21

0 𝐿𝑡22)

then ℓ211 = 𝑎11, from which we get ℓ11. We also find ℓ11(𝐿𝑡)1𝑗 = ℓ𝑗1 = 𝑎1𝑗 , so we can compute the whole
first column of 𝐿. Finally, 𝐴22 = 𝐿22𝐿𝑡22 + ℓ12ℓ𝑡12, so

𝐿22𝐿𝑡22 = 𝐴22 − ℓ12ℓ𝑡12,

which shows that 𝐿22 is the Cholesky factor of the updated 𝐴22 block. Recursively, the algorithm is now
defined.
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5.3.2 Uniqueness

It is always a good idea, when discussing numerical algorithms, to wonder if different ways of computing
lead to the same result. This is referred to as the ‘uniqueness’ of the result, and it is of practical use: if
the computed result is unique, swapping one software library for another will not change anything in the
computation.

Let us consider the uniqueness of 𝐿𝑈 factorization. The definition of an 𝐿𝑈 factorization algorithm (with-
out pivoting) is that, given a nonsingular matrix 𝐴, it will give a lower triangular matrix 𝐿 and upper
triangular matrix 𝑈 such that 𝐴 = 𝐿𝑈 . The above algorithm for computing an 𝐿𝑈 factorization is deter-
ministic (it does not contain instructions ‘take any row that satisfies…’), so given the same input, it will
always compute the same output. However, other algorithms are possible, so we need to worry whether
they give the same result.

Let us then assume that𝐴 = 𝐿1𝑈1 = 𝐿2𝑈2 where 𝐿1, 𝐿2 are lower triangular and 𝑈1, 𝑈2 are upper triangular.
Then, 𝐿−12 𝐿1 = 𝑈2𝑈−11 . In that equation, the left hand side is the product of lower triangular matrices, while
the right hand side contains only upper triangular matrices.

Exercise 5.6. Prove that the product of lower triangular matrices is lower triangular, and the
product of upper triangular matrices upper triangular. Is a similar statement true for
inverses of nonsingular triangular matrices?

The product 𝐿−12 𝐿1 is apparently both lower triangular and upper triangular, so it must be diagonal. Let
us call it 𝐷, then 𝐿1 = 𝐿2𝐷 and 𝑈2 = 𝐷𝑈1. The conclusion is that 𝐿𝑈 factorization is not unique, but it is
unique ‘up to diagonal scaling’.

Exercise 5.7. The algorithm in section 5.3.1 resulted in a lower triangular factor 𝐿 that had
ones on the diagonal. Show that this extra condition makes the factorization unique.

Exercise 5.8. Show that an alternative condition of having ones on the diagonal of 𝑈 is also
sufficient for the uniqueness of the factorization.

Since we can demand a unit diagonal in 𝐿 or in 𝑈 , you may wonder if it is possible to have both. (Give a
simple argument why this is not strictly possible.) We can do the following: suppose that 𝐴 = 𝐿𝑈 where
𝐿 and 𝑈 are nonsingular lower and upper triangular, but not normalized in any way. Write

𝐿 = (𝐼 + 𝐿′)𝐷𝐿, 𝑈 = 𝐷𝑈 (𝐼 + 𝑈 ′), 𝐷 = 𝐷𝐿𝐷𝑈 .
After some renaming we now have a factorization

𝐴 = (𝐼 + 𝐿)𝐷(𝐼 + 𝑈 ) (5.5)

where 𝐷 is a diagonal matrix containing the pivots.

Exercise 5.9. Show that you can also normalize the factorization on the form

𝐴 = (𝐷 + 𝐿)𝐷−1(𝐷 + 𝑈 ). (5.6)

How does this 𝐷 relate to the previous?

Exercise 5.10. Consider the factorization of a tridiagonal matrix on the form 5.6. How do the
resulting 𝐿 and 𝑈 relate to the triangular parts 𝐿𝐴, 𝑈𝐴 of 𝐴? Derive a relation between
𝐷 and 𝐷𝐴 and show that this is the equation that generates the pivots.
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5.3.3 Pivoting

Above, you saw exampleswhere pivoting, that is, exchanging rows, was necessary during the factorization
process, either to guarantee the existence of a nonzero pivot, or for numerical stability. We will now
integrate pivoting into the 𝐿𝑈 factorization.

Let us first observe that row exchanges can be described by a matrix multiplication. Let

𝑃 (𝑖,𝑗) =

𝑖 𝑗

𝑖

𝑗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0
0 ⋱ ⋱

0 1
𝐼

1 0
𝐼

⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

then 𝑃 (𝑖,𝑗)𝐴 is the matrix 𝐴 with rows 𝑖 and 𝑗 exchanged. Since we may have to pivot in every iteration 𝑖
of the factorization process, we introduce a sequence 𝑝(⋅) where 𝑝(𝑖) is the 𝑗 values of the row that row 𝑖
is switched with. We write 𝑃 (𝑖) ≡ 𝑃 (𝑖,𝑝(𝑖)) for short.
Exercise 5.11. Show that 𝑃 (𝑖) is its own inverse.

The process of factoring with partial pivoting can now be described as:

• Let 𝐴(𝑖) be the matrix with columns 1… 𝑖 − 1 eliminated, and partial pivoting applied to get the
desired element in the (𝑖, 𝑖) location.

• Let ℓ(𝑖) be the vector of multipliers in the 𝑖-th elimination step. (That is, the elimination matrix 𝐿𝑖
in this step is the identity plus ℓ(𝑖) in the 𝑖-th column.)

• Let 𝑃 (𝑖+1) (with 𝑗 ≥ 𝑖 + 1) be the matrix that does the partial pivoting for the next elimination
step as described above.

• Then 𝐴(𝑖+1) = 𝑃 (𝑖+1)𝐿𝑖𝐴(𝑖).
In this way we get a factorization of the form

𝐿𝑛−1𝑃 (𝑛−2)𝐿𝑛−2 ⋯𝐿1𝑃 (1)𝐴 = 𝑈 .

Suddenly it has become impossible to write 𝐴 = 𝐿𝑈 : instead we write

𝐴 = 𝑃 (1)𝐿−11 ⋯𝑃 (𝑛−2)𝐿−1𝑛−1𝑈 . (5.7)

Exercise 5.12. Recall from sections 1.8.13 and 1.8.11 that blocked algorithms are often desirable
from a performance point of view.Why is the ‘𝐿𝑈 factorizationwith interleaved pivoting
matrices’ in equation (5.7) bad news for performance?

Fortunately, equation (5.7) can be simplified: the 𝑃 and 𝐿 matrices ‘almost commute’. We show this by
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looking at an example: 𝑃 (2)𝐿1 = �̃�1𝑃 (2) where �̃�1 is very close to 𝐿1.

⎛
⎜
⎜
⎜
⎝

1
0 1

𝐼
1 0

𝐼

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1 ∅
⋮ 1

ℓ(1) ⋱
⋮ 1

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎜
⎝

1 ∅
⋮ 0 1

ℓ̃(1)
⋮ 1 0
⋮ 𝐼

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

1 ∅
⋮ 1

ℓ̃(1) ⋱
⋮ 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

1
0 1

𝐼
1 0

𝐼

⎞
⎟
⎟
⎟
⎠

where ℓ̃(1) is the same as ℓ(1), except that elements 𝑖 and 𝑝(𝑖) have been swapped. You can now convince
yourself that similarly 𝑃 (2) et cetera can be ‘pulled through’ 𝐿1.
As a result we get

𝑃 (𝑛−2) ⋯𝑃 (1)𝐴 = �̃�−11 ⋯𝐿−1𝑛−1𝑈 = �̃�𝑈 . (5.8)

This means that we can again form a matrix 𝐿 just as before, except that every time we pivot, we need to
update the columns of 𝐿 that have already been computed.

Exercise 5.13. If we write equation (5.8) as 𝑃𝐴 = 𝐿𝑈 , we get 𝐴 = 𝑃−1𝐿𝑈 . Can you come up
with a simple formula for 𝑃−1 in terms of just 𝑃? Hint: each 𝑃 (𝑖) is symmetric and its
own inverse; see the exercise above.

Exercise 5.14. Earlier, you saw that 2D BVPs (section 4.2.3) give rise to a certain kind of matrix.
We stated, without proof, that for these matrices pivoting is not needed. We can now
formally prove this, focusing on the crucial property of diagonal dominance:

∀𝑖𝑎𝑖𝑖 ≥ ∑
𝑗≠𝑖

|𝑎𝑖𝑗 |.

Assume that a matrix 𝐴 satisfies ∀𝑗≠𝑖∶ 𝑎𝑖𝑗 ≤ 0.
• Show that the matrix is diagonally dominant iff there are vectors 𝑢, 𝑣 ≥ 0 (meaning
that each component is nonnegative) such that 𝐴𝑢 = 𝑣 .

• Show that, after eliminating a variable, for the remaining matrix �̃� there are again
vectors �̃�, ̃𝑣 ≥ 0 such that �̃��̃� = ̃𝑣 .

• Now finish the argument that (partial) pivoting is not necessary if 𝐴 is symmetric
and diagonally dominant.

One can actually prove that pivoting is not necessary for any symmetric positive definite
(SPD) matrix, and diagonal dominance is a stronger condition than SPD-ness.

5.3.4 Solving the system

Now that we have a factorization 𝐴 = 𝐿𝑈 , we can use this to solve the linear system 𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏. If we
introduce a temporary vector 𝑦 = 𝑈𝑥 , we see this takes two steps:

𝐿𝑦 = 𝑏, 𝑈 𝑥 = 𝑧.
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The first part, 𝐿𝑦 = 𝑏 is called the ‘lower triangular solve’, since it involves the lower triangular matrix 𝐿:

⎛
⎜
⎜
⎜
⎝

1 ∅
ℓ21 1
ℓ31 ℓ32 1
⋮ ⋱

ℓ𝑛1 ℓ𝑛2 ⋯ 1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝑦1
𝑦2

⋮
𝑦𝑛

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝑏1
𝑏2

⋮
𝑏𝑛

⎞
⎟
⎟
⎟
⎠

In the first row, you see that 𝑦1 = 𝑏1. Then, in the second row ℓ21𝑦1 + 𝑦2 = 𝑏2, so 𝑦2 = 𝑏2 − ℓ21𝑦1. You can
imagine how this continues: in every 𝑖-th row you can compute 𝑦𝑖 from the previous 𝑦-values:

𝑦𝑖 = 𝑏𝑖 − ∑
𝑗<𝑖

ℓ𝑖𝑗𝑦𝑗 .

Since we compute 𝑦𝑖 in increasing order, this is also known as the forward substitution, forward solve, or
forward sweep.

The second half of the solution process, the upper triangular solve, backward substitution, or backward
sweep, computes 𝑥 from 𝑈𝑥 = 𝑦 :

⎛
⎜
⎜
⎝

𝑢11 𝑢12 … 𝑢1𝑛
𝑢22 … 𝑢2𝑛

⋱ ⋮
∅ 𝑢𝑛𝑛

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

𝑦1
𝑦2
⋮
𝑦𝑛

⎞
⎟
⎟
⎠

Now we look at the last line, which immediately tells us that 𝑥𝑛 = 𝑢−1𝑛𝑛 𝑦𝑛. From this, the line before the
last states 𝑢𝑛−1𝑛−1𝑥𝑛−1 + 𝑢𝑛−1𝑛𝑥𝑛 = 𝑦𝑛−1, which gives 𝑥𝑛−1 = 𝑢−1𝑛−1𝑛−1(𝑦𝑛−1 − 𝑢𝑛−1𝑛𝑥𝑛). In general, we can
compute

𝑥𝑖 = 𝑢−1𝑖𝑖 (𝑦𝑖 − ∑
𝑗>𝑖

𝑢𝑖𝑗𝑦𝑗)

for decreasing values of 𝑖.
Exercise 5.15. In the backward sweep you had to divide by the numbers 𝑢𝑖𝑖. That is not possible

if any of them are zero. Relate this problem back to the above discussion.

5.3.5 Complexity

In the beginning of this chapter, we indicated that not every method for solving a linear system takes the
same number of operations. Let us therefore take a closer look at the complexity (See appendix 14 for a
short introduction to complexity.), that is, the number of operations as function of the problem size, of
the use of an LU factorization in solving the linear system.

First we look at the computation of 𝑥 from 𝐿𝑈𝑥 = 𝑏 (‘solving the linear system’; section 5.3.4), given that
we already have the factorization 𝐴 = 𝐿𝑈 . Looking at the lower and upper triangular part together, you
see that you perform a multiplication with all off-diagonal elements (that is, elements ℓ𝑖𝑗 or 𝑢𝑖𝑗 with 𝑖 ≠ 𝑗).
Furthermore, the upper triangular solve involves divisions by the 𝑢𝑖𝑖 elements. Now, division operations
are in general much more expensive than multiplications, so in this case you would compute the values
1/𝑢𝑖𝑖, and store them instead.
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Exercise 5.16. Take a look at the factorization algorithm, and argue that storing the reciprocals
of the pivots does not add to the computational complexity.

Summing up, you see that, on a system of size 𝑛 × 𝑛, you perform 𝑛2 multiplications and roughly the
same number of additions. This shows that, given a factorization, solving a linear system has the same
complexity as a simple matrix-vector multiplication, that is, of computing 𝐴𝑥 given 𝐴 and 𝑥 .
The complexity of constructing the 𝐿𝑈 factorization is a bit more involved to compute. Refer to the algo-
rithm in section 5.3.1. You see that in the 𝑘-th step two things happen: the computation of the multipliers,
and the updating of the rows. There are 𝑛 − 𝑘 multipliers to be computed, each of which involve a divi-
sion. After that, the update takes (𝑛−𝑘)2 additions and multiplications. If we ignore the divisions for now,
because there are fewer of them, we find that the 𝐿𝑈 factorization takes ∑𝑛−1

𝑘=1 2(𝑛 − 𝑘)2 operations. If we
number the terms in this sum in the reverse order, we find

#ops =
𝑛−1
∑
𝑘=1

2𝑘2.

Since we can approximate a sum by an integral, we find that this is 2/3𝑛3 plus some lower order terms.
This is of a higher order than solving the linear system: as the system size grows, the cost of constructing
the 𝐿𝑈 factorization completely dominates.

Of course there is more to algorithm analysis than operation counting.While solving the linear system has
the same complexity as a matrix-vector multiplication, the two operations are of a very different nature.
One big difference is that both the factorization and forward/backward solution involve recursion, so they
are not simple to parallelize. We will say more about that later on.

5.3.6 Block algorithms

Many linear algebra matrix operations can be formulated in terms of sub blocks, rather than basic el-
ements. Such blocks sometimes arise naturally from the nature of an application, such as in the case of
two-dimensional BVPs; section 4.2.3. However, often we impose a block structure on a matrix purely from
a point of performance.

Using blockmatrix algorithms can have several advantages over the traditional scalar view ofmatrices. For
instance, it improves cache blocking (section 1.8.9); it also facilitates scheduling linear algebra algorithms
on multicore architectures (section 6.12).

For block algorithms we write a matrix as

𝐴 = (
𝐴11 … 𝐴1𝑁
⋮ ⋮

𝐴𝑀1 … 𝐴𝑀𝑁
)

where𝑀,𝑁 are the block dimensions, that is, the dimension expressed in terms of the subblocks. Usually,
we choose the blocks such that 𝑀 = 𝑁 and the diagonal blocks are square.
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As a simple example, consider the matrix-vector product 𝑦 = 𝐴𝑥 , expressed in block terms.

(
𝑌1
⋮

𝑌𝑀
) = (

𝐴11 … 𝐴1𝑀
⋮ ⋮

𝐴𝑀1 … 𝐴𝑀𝑀
)(

𝑋1
⋮

𝑋𝑀
)

To see that the block algorithm computes the same result as the old scalar algorithm, we look at a com-
ponent 𝑌𝑖𝑘 , that is the 𝑘-th scalar component of the 𝑖-th block. First,

𝑌𝑖 = ∑
𝑗

𝐴𝑖𝑗𝑋𝑗

so

𝑌𝑖𝑘 = (∑
𝑗

𝐴𝑖𝑗𝑋𝑗)𝑘 = ∑
𝑗

(𝐴𝑖𝑗𝑋𝑗)𝑘 = ∑
𝑗

∑
ℓ

𝐴𝑖𝑗𝑘ℓ𝑋𝑗ℓ

which is the product of the 𝑘-th row of the 𝑖-th blockrow of 𝐴 with the whole of 𝑋 .

Amore interesting algorithm is the block version of the LU factorization. The algorithm (5.1) then becomes

⟨𝐿𝑈 factorization⟩:
for 𝑘 = 1, 𝑛 − 1:

for 𝑖 = 𝑘 + 1 to 𝑛:
𝐴𝑖𝑘 ← 𝐴𝑖𝑘𝐴−1𝑘𝑘
for 𝑗 = 𝑘 + 1 to 𝑛:

𝐴𝑖𝑗 ← 𝐴𝑖𝑗 − 𝐴𝑖𝑘 ⋅ 𝐴𝑘𝑗

(5.9)

which mostly differs from the earlier algorithm in that the division by 𝑎𝑘𝑘 has been replaced by a multipli-
cation by 𝐴−1𝑘𝑘 . Also, the 𝑈 factor will now have pivot blocks, rather than pivot elements, on the diagonal,
so 𝑈 is only ‘block upper triangular’, and not strictly upper triangular.

Exercise 5.17. We would like to show that the block algorithm here again computes the same
result as the scalar one. Doing so by looking explicitly at the computed elements is
cumbersome, so we take another approach. First, recall from section 5.3.2 that 𝐿𝑈 fac-
torizations are unique if we impose some normalization: if 𝐴 = 𝐿1𝑈1 = 𝐿2𝑈2 and 𝐿1, 𝐿2
have unit diagonal, then 𝐿1 = 𝐿2, 𝑈1 = 𝑈2.
Next, consider the computation of 𝐴−1𝑘𝑘 . Show that this can be done by first computing
an LU factorization of 𝐴𝑘𝑘 . Now use this to show that the block LU factorization can
give 𝐿 and 𝑈 factors that are strictly triangular. The uniqueness of 𝐿𝑈 factorizations
then proves that the block algorithm computes the scalar result.

As a practical point, we note that these matrix blocks are often only conceptual: the matrix is still stored
in a traditional row or columnwise manner. The three-parameter M,N,LDA description of matrices used
in the BLAS (section Tutorials book, section 6) makes it possible to extract submatrices.
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5.4 Sparse matrices

In section 4.2.3 you saw that the discretization of BVPs (and IBVPs) may give rise to sparse matrices. Since
such a matrix has 𝑁 2 elements but only 𝑂(𝑁 ) nonzeros, it would be a big waste of space to store this as
a two-dimensional array. Additionally, we want to avoid operating on zero elements.

In this section we will explore efficient storage schemes for sparse matrices, and the form that familiar
linear algebra operations take when using sparse storage.

5.4.1 Storage of sparse matrices

It is pointless to look for an exact definition of sparse matrix, but an operational definition is that a matrix
is called ‘sparse’ if there are enough zeros to make specialized storage feasible. We will discuss here briefly
the most popular storage schemes for sparse matrices. Since a matrix is no longer stored as a simple 2-
dimensional array, algorithms using such storage schemes need to be rewritten too.

5.4.1.1 Band storage and diagonal storage

In section 4.2.2 you have seen examples of sparse matrices that were banded. In fact, their nonzero ele-
ments are located precisely on a number of subdiagonals. For such a matrix, a specialized storage scheme
is possible.

Let us take as an example the matrix of the one-dimensional BVP (section 4.2.2). Its elements are located
on three subdiagonals: the main diagonal and the first super and subdiagonal. In band storage we store
only the band containing the nonzeros in memory. The most economical storage scheme for such a matrix
would store the 2𝑛−2 elements consecutively. However, for various reasons it is more convenient to waste
a few storage locations, as shown in figure 5.2.

Figure 5.2: Diagonal storage of a banded matrix.

Thus, for a matrix with size 𝑛 × 𝑛 and a matrix bandwidth 𝑝, we need a rectangular array of size 𝑛 × 𝑝 to
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store the matrix. The matrix of equation (4.49) would then be stored as

⋆ 2 −1
−1 2 −1
⋮ ⋮ ⋮

−1 2 ⋆
(5.10)

where the stars indicate array elements that do not correspond to matrix elements: they are the triangles
in the top left and bottom right in figure 5.2.

Of course, now we have to wonder about the conversion between array elements A(i,j) and matrix
elements 𝐴𝑖𝑗 . We first do this in the Fortran language, with column-major storage. If we allocate the array
with

dimension A(n,-1:1)

then the main diagonal 𝐴𝑖𝑖 is stored in A(*,0). For instance, A(1, 0) ∼ 𝐴11. The next location in the same
row of the matrix 𝐴, A(1, 1) ∼ 𝐴12. It is easy to see that together we have the conversion

A(i, j) ∼ 𝐴𝑖,𝑖+𝑗 . (5.11)

Remark 20 The BLAS / Linear Algebra Package (LAPACK) libraries also have a banded storage, but that is
column-based, rather than diagonal as we are discussing here.

Exercise 5.18. What is the reverse conversion, that is, what array location A(?,?) does the
matrix element 𝐴𝑖𝑗 correspond to?

Exercise 5.19. If you are a C programmer, derive the conversion between matrix elements 𝐴𝑖𝑗
and array elements A[i][j].

If we apply this scheme of storing the matrix as an 𝑁 × 𝑝 array to the matrix of the two-dimensional
BVP (section 4.2.3), it becomes wasteful, since we would be storing many zeros that exist inside the band.
Therefore, in storage by diagonals or diagonal storage we refine this scheme by storing only the nonzero
diagonals: if the matrix has 𝑝 nonzero diagonals, we need an 𝑛 × 𝑝 array. For the matrix of equation (4.56)
this means:

⋆ ⋆ 4 −1 −1
⋮ ⋮ 4 −1 −1
⋮ −1 4 −1 −1

−1 −1 4 −1 −1
⋮ ⋮ ⋮ ⋮ ⋮

−1 −1 4 ⋆ ⋆

Of course, we need an additional integer array telling us the locations of these nonzero diagonals.

Exercise 5.20. For the central difference matrix in 𝑑 = 1, 2, 3 space dimensions, what is the
bandwidth as order of 𝑁 ? What is it as order of the discretization parameter ℎ?
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In the preceding examples, the matrices had an equal number of nonzero diagonals above and below the
main diagonal. In general this need not be true. For this we introduce the concepts of

• left halfbandwidth: if 𝐴 has a left halfbandwidth of 𝑝 then 𝐴𝑖𝑗 = 0 for 𝑖 > 𝑗 + 𝑝, and
• right halfbandwidth: if 𝐴 has a right halfbandwidth of 𝑝 then 𝐴𝑖𝑗 = 0 for 𝑗 > 𝑖 + 𝑝.

If the left and right halfbandwidth are the same, we simply refer to the halfbandwidth.

5.4.1.2 Operations on diagonal storage

In several contexts, such as explicit time-stepping (section 4.3.1.1) and iterative solutionmethods for linear
system (section 5.5), the most important operation on sparse matrices is the matrix-vector product. In this
section we study how we need to reformulate this operation in view of different storage schemes.

With a matrix stored by diagonals, as described above, it is still possible to perform the ordinary rowwise
or columnwise product using the conversion formula (5.11); in fact, this is how Lapack banded routines
work. However, with a small bandwidth, this gives short vector lengths and relatively high loop overhead,
so it will not be efficient. It is possible do to much better than that.

If we look at how thematrix elements are used in the matrix-vector product, we see that the main diagonal
is used as

𝑦𝑖 ← 𝑦𝑖 + 𝐴𝑖𝑖𝑥𝑖,
the first superdiagonal is used as

𝑦𝑖 ← 𝑦𝑖 + 𝐴𝑖𝑖+1𝑥𝑖+1 for 𝑖 < 𝑛,
and the first subdiagonal as

𝑦𝑖 ← 𝑦𝑖 + 𝐴𝑖𝑖−1𝑥𝑖−1 for 𝑖 > 1.
In other words, the wholematrix-vector product can be executed in just three vector operations of length 𝑛
(or 𝑛 − 1), instead of 𝑛 inner products of length 3 (or 2).

for diag = -diag_left, diag_right
for loc = max(1,1-diag), min(n,n-diag)

y(loc) = y(loc) + val(loc,diag) * x(loc+diag)
end

end

Exercise 5.21. Write a routine that computes 𝑦 ← 𝐴𝑡𝑥 by diagonals. Implement it in your
favorite language and test it on a random matrix.

Exercise 5.22. The above code fragment is efficient if the matrix is dense inside the band. This
is not the case for, for instance, the matrix of two-dimensional BVPs; see section 4.2.3
and in particular equation (4.56). Write code for the matrix-vector product by diagonals
that only uses the nonzero diagonals.

Exercise 5.23. Multiplying matrices is harder than multiplying a matrix times a vector. If ma-
trix 𝐴 has left and halfbandwidth 𝑝𝐴, 𝑞𝑄 , and matrix 𝐵 has 𝑝𝐵, 𝑞𝐵, what are the left and
right halfbandwidth of 𝐶 = 𝐴𝐵? Assuming that an array of sufficient size has been
allocated for 𝐶 , write a routine that computes 𝐶 ← 𝐴𝐵.
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5.4.1.3 Compressed row storage

If we have a sparse matrix that does not have a simple band structure, or where the number of nonzero
diagonals becomes impractically large, we use the more general Compressed Row Storage (CRS) scheme.
As the name indicates, this scheme is based on compressing all rows, eliminating the zeros; see figure 5.3.
Since this loses the information what columns the nonzeros originally came from, we have to store this

Figure 5.3: Compressing a row of a sparse matrix in the CRS format.

explicitly. Consider an example of a sparse matrix:

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎝

10 0 0 0 −2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 −1

⎞
⎟
⎟
⎟
⎟
⎠

. (5.12)

After compressing all rows, we store all nonzeros in a single real array. The column indices are similarly
stored in an integer array, and we store pointers to where the columns start. Using 0-based indexing this
gives:

val 10 −2 3 9 3 7 8 7 3⋯ 9 13 4 2 −1
colind 0 4 0 1 5 1 2 3 0⋯ 4 5 1 4 5
rowptr 0 2 5 8 12 16 19

A simple variant of CRS is Compressed Column Storage (CCS) where the elements in columns are stored
contiguously. This is also known as the Harwell-Boeing matrix format [54]. Another storage scheme you
may come across is coordinate storage, where the matrix is stored as a list of triplets ⟨𝑖, 𝑗, 𝑎𝑖𝑗⟩. The popular
Matrix Market website [151] uses a variant of this scheme.

5.4.1.4 Algorithms on compressed row storage

In this section we will look at the form some algorithms take in CRS.
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First we consider the implementation of the sparse matrix-vector product.

for (row=0; row<nrows; row++) {
s = 0;
for (icol=ptr[row]; icol<ptr[row+1]; icol++) {

int col = ind[icol];
s += a[icol] * x[col];

}
y[row] = s;

}

You recognize the standard matrix-vector product algorithm for 𝑦 = 𝐴𝑥 , where the inner product is taken
of each row 𝐴𝑖∗ and the input vector 𝑥 . However, the inner loop no long has the column number as index,
but rather the location where that number is to be found. This extra step is known as indirect addressing.

Exercise 5.24. Compare the data locality of the densematrix-vector product, executed by rows,
with the sparse product given just now. Show that, for general sparse matrices, the
spatial locality in addressing the input vector 𝑥 has now disappeared. Are there matrix
structures for which you can still expect some spatial locality?

Now, how about if you wanted to compute the product 𝑦 = 𝐴𝑡𝑥? In that case you need rows of 𝐴𝑡 , or,
equivalently, columns of 𝐴. Finding arbitrary columns of 𝐴 is hard, requiring lots of searching, so you
may think that this algorithm is correspondingly hard to compute. Fortunately, that is not true.

If we exchange the 𝑖 and 𝑗 loop in the standard algorithm for 𝑦 = 𝐴𝑥 , we get

Original:

𝑦 ← 0
for 𝑖:

for 𝑗:
𝑦𝑖 ← 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗

Indices reversed:

𝑦 ← 0
for 𝑗:

for 𝑖:
𝑦𝑖 ← 𝑦𝑖 + 𝑎𝑗𝑖𝑥𝑗

We see that in the second variant, columns of 𝐴 are accessed, rather than rows. This means that we can
use the second algorithm for computing the 𝐴𝑡𝑥 product by rows.

Exercise 5.25. Write out the code for the transpose product 𝑦 = 𝐴𝑡𝑥 where 𝐴 is stored in CRS
format. Write a simple test program and confirm that your code computes the right
thing.

Exercise 5.26. What if you need access to both rows and columns at the same time? Implement
an algorithm that tests whether a matrix stored in CRS format is symmetric. Hint: keep
an array of pointers, one for each row, that keeps track of how far you have progressed
in that row.

Exercise 5.27. The operations described so far are fairly simple, in that they nevermake changes
to the sparsity structure of the matrix. The CRS format, as described above, does not al-
low you to add new nonzeros to the matrix, but it is not hard to make an extension that
does allow it.
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Let numbers 𝑝𝑖, 𝑖 = 1… 𝑛, describing the number of nonzeros in the 𝑖-th row, be given.
Design an extension to CRS that gives each row space for 𝑞 extra elements. Implement
this scheme and test it: construct a matrix with 𝑝𝑖 nonzeros in the 𝑖-th row, and check
the correctness of the matrix-vector product before and after adding new elements, up
to 𝑞 elements per row.
Now assume that the matrix will never have more than a total of 𝑞𝑛 nonzeros. Alter
your code so that it can deal with starting with an empty matrix, and gradually adding
nonzeros in random places. Again, check the correctness.

We will revisit the transpose product algorithm in section 6.5.5 in the context of shared memory paral-
lelism.

5.4.1.5 Ellpack storage variants

In the above you have seen diagonal storage, which results in long vectors, but is limited to matrices of a
definite bandwidth, and compressed row storage, which is more general, but has different vector/parallel
properties. Specifically, in CRS, the only vectors are the reduction of a single row times the input vector.
These are in general short, and involve indirect addressing, so they will be inefficient for two reasons.

Exercise 5.28. Argue that there is no efficiency problem if we consider the matrix-vector prod-
uct as a parallel operation.

Vector operations are attractive, first of all for GPUs, but also with the increasing vectorwidth of modern
processors; see for instance the instruction set of modern Intel processors. So is there a way to combine
the flexibility of CRS and the efficiency of diagonal storage?

The approach taken here is to use a variant of Ellpack storage. Here, a matrix is stored by or jagged
diagonals: the first jagged diagonal consists of the leftmost elements of each row, the second diagonal of
the next-leftmost elements, et cetera. Now we can perform a product by diagonals, with the proviso that
indirect addressing of the input is needed.

A second problem with this scheme is that the last so many diagonals will not be totally filled. At least
two solutions have been proposed here:

• One could sort the rows by rowlength. Since the number of different rowlengths is probably low,
this means we will have a short loop over those lengths, around long vectorized loops through
the diagonal. On vector architectures this can give enormous performance improvements [39].

• With vector instructions, or on GPUs, only a modest amount of regularity is needed, so one could
take a block of 8 or 32 rows, and ‘pad’ them with zeros.

5.4.2 Sparse matrices and graph theory

Many arguments regarding sparse matrices can be formulated in terms of graph theory. To see why this
can be done, consider a matrix 𝐴 of size 𝑛 and observe that we can define a graph ⟨𝐸, 𝑉 ⟩ by 𝑉 = {1, … , 𝑛},
𝐸 = {(𝑖, 𝑗)∶ 𝑎𝑖𝑗 ≠ 0}. This is called the adjacency graph of the matrix. For simplicity, we assume that 𝐴 has
a nonzero diagonal. If necessary, we can attach weights to this graph, defined by 𝑤𝑖𝑗 = 𝑎𝑖𝑗 . The graph is
then denoted ⟨𝐸, 𝑉 ,𝑊 ⟩. (If you are not familiar with the basics of graph theory, see appendix 19.)

Graph properties now correspond to matrix properties; for instance, the degree of the graph is the maxi-
mum number of nonzeros per row, not counting the diagonal element. As another example, if the graph
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of the matrix is an undirected graph, this means that 𝑎𝑖𝑗 ≠ 0 ⇔ 𝑎𝑗𝑖 ≠ 0. We call such a matrix structurally
symmetric: it is not truly symmetric in the sense that ∀𝑖𝑗 ∶ 𝑎𝑖𝑗 = 𝑎𝑖𝑗 , but every nonzero in the upper triangle
corresponds to one in the lower triangle and vice versa.

5.4.2.1 Graph properties under permutation

One advantage of considering the graph of a matrix is that graph properties do not depend on how we
order the nodes, that is, they are invariant under permutation of the matrix.

Exercise 5.29. Let us take a look at what happens with a matrix 𝐴 when the nodes of its graph
𝐺 = ⟨𝑉 , 𝐸,𝑊 ⟩ are renumbered. As a simple example, we number the nodes backwards;
that is, with 𝑛 the number of nodes, we map node 𝑖 to 𝑛+1− 𝑖. Correspondingly, we find
a new graph 𝐺′ = ⟨𝑉 , 𝐸′, 𝑊 ′⟩ where

(𝑖, 𝑗) ∈ 𝐸′ ⇔ (𝑛 + 1 − 𝑖, 𝑛 + 1 − 𝑗) ∈ 𝐸, 𝑤 ′𝑖𝑗 = 𝑤𝑛+1−𝑖,𝑛+1−𝑗 .
What does this renumbering imply for the matrix 𝐴′ that corresponds to 𝐺′? If you
exchange the labels 𝑖, 𝑗 on two nodes, what is the effect on the matrix 𝐴?

Exercise 5.30. Some matrix properties stay invariant under permutation. Convince your self
that permutation does not change the eigenvalues of a matrix.

Some graph properties can be hard to see from the sparsity pattern of a matrix, but are easier deduced
from the graph.

Exercise 5.31. Let 𝐴 be the tridiagonal matrix of the one-dimensional BVP (see section 4.2.2)
of size 𝑛 with 𝑛 odd. What does the graph of 𝐴 look like? Consider the permutation that
results from putting the nodes in the following sequence:

1, 3, 5, … , 𝑛, 2, 4, 6, … , 𝑛 − 1.
What does the sparsity pattern of the permuted matrix look like? Renumbering strate-
gies such as this will be discussed in more detail in section 6.8.2.
Now take this matrix and zero the offdiagonal elements closest to the ‘middle’ of the
matrix: let

𝑎(𝑛+1)/2,(𝑛+1)/2+1 = 𝑎(𝑛+1)/2+1,(𝑛+1)/2 = 0.
Describe what that does to the graph of 𝐴. Such a graph is called reducible. Now apply
the permutation of the previous exercise and sketch the resulting sparsity pattern. Note
that the reducibility of the graph is now harder to read from the sparsity pattern.

5.4.3 LU factorizations of sparse matrices

In section 4.2.2 the one-dimensional BVP led to a linear system with a tridiagonal coefficient matrix. If we
do one step of Gaussian elimination, the only element that needs to be eliminated is in the second row:

⎛
⎜
⎜
⎝

2 −1 0 …
−1 2 −1
0 −1 2 −1

⋱ ⋱ ⋱ ⋱

⎞
⎟
⎟
⎠

⇒
⎛
⎜⎜⎜
⎝

2 −1 0 …
0 2 − 1

2 −1
0 −1 2 −1

⋱ ⋱ ⋱ ⋱

⎞
⎟⎟⎟
⎠
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There are two important observations to be made: one is that this elimination step does not change any
zero elements to nonzero. The other observation is that the part of the matrix that is left to be eliminated
is again tridiagonal. Inductively, during the elimination no zero elements change to nonzero: the sparsity
pattern of 𝐿 + 𝑈 is the same as of 𝐴, and so the factorization takes the same amount of space to store as
the matrix.

The case of tridiagonal matrices is unfortunately not typical, as we will shortly see in the case of two-
dimensional problems. But first we will extend the discussion on graph theory of section 5.4.2 to factor-
izations.

5.4.3.1 Graph theory of sparse LU factorization

Graph theory is often useful when discussion the LU factorization of a sparse matrix. Let us investigate
what eliminating the first unknown (or sweeping the first column) means in graph theoretic terms. We
are assuming a structurally symmetric matrix.

We consider eliminating an unknown as a process that takes a graph 𝐺 = ⟨𝑉 , 𝐸⟩ and turns it into a graph
𝐺′ = ⟨𝑉 ′, 𝐸′⟩. The relation between these graphs is first that a vertex, say 𝑘, has been removed from the
vertices: 𝑘 ∉ 𝑉 ′, 𝑉 ′ ∪ {𝑘} = 𝑉 .

Figure 5.4: Eliminating a vertex introduces a new edge in the quotient graph.

The relationship between 𝐸 and 𝐸′ is more complicated. In the Gaussian elimination algorithm the result
of eliminating variable 𝑘 is that the statement

𝑎𝑖𝑗 ← 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎−1𝑘𝑘 𝑎𝑘𝑗
is executed for all 𝑖, 𝑗 ≠ 𝑘. If 𝑎𝑖𝑗 ≠ 0 originally, that is, (𝑖, 𝑗) ∈ 𝐸, then the value of 𝑎𝑖𝑗 is merely altered,
which does not change the adjacency graph. In case 𝑎𝑖𝑗 = 0 in the original matrix, meaning (𝑖, 𝑗) ∉ 𝐸, there
will be a nonzero element, termed a fill-in element, after the 𝑘 unknown is eliminated [159]:

(𝑖, 𝑗) ∉ 𝐸 but (𝑖, 𝑗) ∈ 𝐸′.
This is illustrated in figure 5.4.

Summarizing, eliminating an unknown gives a graph that has one vertex less, and that has additional
edges for all 𝑖, 𝑗 such that there were edges between 𝑖 or 𝑗 and the eliminated variable 𝑘.
Figure 5.5 gives a full illustration on a small matrix.

Exercise 5.32. Go back to exercise 5.31. Use a graph argument to determine the sparsity pattern
after the odd variables have been eliminated.
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Original matrix.

Eliminating (2, 1) causes fill-in at (2, 3).

Remaining matrix when step 1 finished.

Eliminating (3, 2) fills (3, 4)

After step 2

Figure 5.5: Gaussian elimination of a sparse matrix.
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Exercise 5.33. Prove the generalization of the above argument about eliminating a single ver-
tex. Let 𝐼 ⊂ 𝑉 be any set of vertices, and let 𝐽 be the vertices connected to 𝐼 :

𝐽 ∩ 𝐼 = ∅, ∀𝑖∈𝐼 ∃𝑗∈𝐽 ∶ (𝑖, 𝑗) ∈ 𝐸.

Now show that eliminating the variables in 𝐼 leads to a graph ⟨𝑉 ′, 𝐸′⟩ where all nodes
in 𝐽 are connected in the remaining graph, if there was a path between them through 𝐼 :

∀𝑗1,𝑗2∈𝐽 ∶ there is a path 𝑗𝑖 → 𝑗2 through 𝐼 in 𝐸 ⇒ (𝑗1, 𝑗2) ∈ 𝐸′.

5.4.3.2 Fill-in

We now return to the factorization of the matrix from two-dimensional problems. We write such matrices
of size 𝑁 × 𝑁 as block matrices with block dimension 𝑛, each block being of size 𝑛. (Refresher question:
where do these blocks come from?) Now, in the first elimination step we need to zero two elements, 𝑎21
and 𝑎𝑛+1,1.

⎛
⎜
⎜
⎜
⎝

4 −1 0 … −1
−1 4 −1 0 … 0 −1

⋱ ⋱ ⋱ ⋱
−1 0 … 4 −1
0 −1 0 … −1 4 −1

⎞
⎟
⎟
⎟
⎠

⇒
⎛
⎜⎜⎜⎜
⎝

4 −1 0 … −1
4 − 1

4 −1 0 … −1/4 −1
⋱ ⋱ ⋱ ⋱ ⋱

−1/4 4 − 1
4 −1

−1 0 −1 4 −1

⎞
⎟⎟⎟⎟
⎠

You see that eliminating 𝑎21 and 𝑎𝑛+1,1 causes two fill elements to appear: in the original matrix 𝑎2,𝑛+1 and
𝑎𝑛+1,2 are zero, but in the modified matrix these locations are nonzero. We define fill locations as locations
(𝑖, 𝑗) where 𝑎𝑖𝑗 = 0, but (𝐿 + 𝑈 )𝑖𝑗 ≠ 0.
Clearly thematrix fills in during factorization.With a little imagination you can also see that every element
in the band outside the first diagonal block will fill in. However, using the graph approach of section 5.4.3.1
it becomes easy to visualize the fill-in connections that are created.

In figure 5.6 this is illustrated for the graph of the 2d BVP example. (The edges corresponding to diagonal
elements have not been pictured here.) Each variable in the first row that is eliminated creates connections
between the next variable and the second row, and between variables in the second row. Inductively you
see that after the first row is eliminated the second row is fully connected. (Connect this to exercise 5.33.)

Exercise 5.34. Finish the argument. What does the fact that variables in the second row are
fully connected imply for the matrix structure? Sketch in a figure what happens after
the first variable in the second row is eliminated.

Exercise 5.35. The LAPACK software for dense linear algebra has an LU factorization routine
that overwrites the input matrix with the factors. Above you saw that is possible since
the columns of 𝐿 are generated precisely as the columns of 𝐴 are eliminated. Why is
such an algorithm not possible if the matrix is stored in sparse format?
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Figure 5.6: Creation of fill-in connection in the matrix graph.

5.4.3.3 Fill-in estimates

In the above example you saw that the factorization of a sparse matrix can take much more space than
the matrix itself, but still less than storing an entire square array of size the matrix dimension. We will
now give some bounds for the space complexity of the factorization, that is, the amount of space needed
to execute the factorization algorithm.

Exercise 5.36. Prove the following statements.
1. Assume that the matrix 𝐴 has a halfbandwidth 𝑝, that is, 𝑎𝑖𝑗 = 0 if |𝑖 − 𝑗| > 𝑝. Show

that, after a factorization without pivoting, 𝐿 + 𝑈 has the same halfbandwidth.
2. Show that, after a factorization with partial pivoting, 𝐿 has a left halfbandwidth

of 𝑝, whereas 𝑈 has a right halfbandwidth of 2𝑝.
3. Assuming no pivoting, show that the fill-in can be characterized as follows:

Consider row 𝑖. Let 𝑗min be the leftmost nonzero in row 𝑖, that is 𝑎𝑖𝑗 = 0
for 𝑗 < 𝑗min. Then there will be no fill-in in row 𝑖 to the left of col-
umn 𝑗min. Likewise, if 𝑖min is the topmost nonzero in column 𝑗, there
will be no fill-in in column 𝑗 above row 𝑖min.

As a result, 𝐿 and 𝑈 have a ‘skyline’ profile. Given a sparse matrix, it is now easy
to allocate enough storage to fit a factorization without pivoting: this is knows as
skyline storage.

Exercise 5.37. Consider the matrix

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 0 𝑎13 ∅
0 𝑎22 0 𝑎24
𝑎31 0 𝑎33 0 𝑎35

𝑎42 0 𝑎44 0 𝑎46
⋱ ⋱ ⋱ ⋱ ⋱

∅ 𝑎𝑛,𝑛−1 0 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

You have proved earlier that any fill-in from performing an 𝐿𝑈 factorization is limited
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to the band that contains the original matrix elements. In this case there is no fill-in.
Prove this inductively.
Look at the adjacency graph. (This sort of graph has a name. What is it?) Can you give
a proof based on this graph that there will be no fill-in?

Exercise 5.36 shows that we can allocate enough storage for the factorization of a banded matrix:

• for the factorizationwithout pivoting of a matrix with bandwidth 𝑝, an array of size𝑁 ×𝑝 suffices;
• the factorization with partial pivoting of a matrix left halfbandwidth 𝑝 and right halfbandwidth 𝑞
can be stored in 𝑁 × (𝑝 + 2𝑞 + 1).

• A skyline profile, sufficient for storing the factorization, can be constructed based on the specific
matrix.

We can apply this estimate to the matrix from the two-dimensional BVP, section 4.2.3.

Exercise 5.38. Show that in equation (4.56) the original matrix has 𝑂(𝑁 ) = 𝑂(𝑛2) nonzero
elements, 𝑂(𝑁 2) = 𝑂(𝑛4) elements in total, and the factorization has 𝑂(𝑛𝑁 ) = 𝑂(𝑛3) =
𝑂(𝑁 3/2) nonzeros.

These estimates show that the storage required for an 𝐿𝑈 factorization can be more than what is required
for 𝐴, and the difference is not a constant factor, but related to the matrix size. Without proof we state
that the inverses of the kind of sparse matrices you have seen so far are fully dense, so storing them takes
even more. This is an important reason that solving linear systems 𝐴𝑥 = 𝑦 is not done in practice by
computing 𝐴−1 and subsequently multiplying 𝑥 = 𝐴−1𝑦 . (Numerical stability is another reason that this
is not done.) The fact that even a factorization can take a lot of space is one reason for considering iterative
methods, as we will do in section 5.5.

Above, you saw that the factorization of a dense matrix of size 𝑛×𝑛 takes 𝑂(𝑛3) operations. How is this for
a sparse matrix? Let us consider the case of a matrix with halfbandwidth 𝑝, and assume that the original
matrix is dense in that band. The pivot element 𝑎11 is used to zero 𝑝 elements in the first column, and for
each the first row is added to that row, involving 𝑝 multiplications and additions. In sum, we find that the
number of operations is roughly

𝑛
∑
𝑖=1

𝑝2 = 𝑝2 ⋅ 𝑛

plus or minus lower order terms.

Exercise 5.39. The assumption of a band that is initially dense is not true for the matrix of a
two-dimensional BVP. Why does the above estimate still hold, up to some lower order
terms?

In exercise 5.36 above you derived an estimate for the amount of fill-in that is easy to apply. However, it
can be a considerable overestimate. It is desirable to compute or estimate the amount of fill-in with less
work than doing the actual factorization.Wewill now sketch an algorithm for finding the exact number of
nonzeros in 𝐿+𝑈 , with a cost that is linear in this number. We will do this in the (structurally) symmetric
case. The crucial observation is the following. Suppose column 𝑖 has more than one nonzero below the

Victor Eijkhout 255



5. Numerical linear algebra

diagonal:

⎛
⎜
⎜
⎜
⎜
⎝

⋱
𝑎𝑖𝑖 𝑎𝑖𝑗 𝑎𝑖𝑘

⋱
𝑎𝑗𝑖 𝑎𝑗𝑗

⋱
𝑎𝑘𝑖 ?𝑎𝑘𝑗? 𝑎𝑘𝑘

⎞
⎟
⎟
⎟
⎟
⎠

Eliminating 𝑎𝑘𝑖 in the 𝑖-th step causes an update of 𝑎𝑘𝑗 , or a fill-in element if originally 𝑎𝑘𝑗 = 0. However,
we can infer the existence of this nonzero value: eliminating 𝑎𝑗𝑖 causes a fill-in element in location (𝑗, 𝑘),
and we know that structural symmetry is preserved. In other words, if we are only counting nonzeros, it
is enough to look at the effects of eliminating the (𝑗, 𝑖) location, or in general the first nonzero below the
pivot. Following this argument through, we only need to record the nonzeros in one row per pivot, and
the entire process has a complexity linear in the number of nonzeros in the factorization.

5.4.3.4 Fill-in reduction

Graph properties of a matrix, such as degree and diameter, are invariant under renumbering the variables.
Other properties, such as fill-in during a factorization, are affected by renumbering. In fact, it is worthwhile
investigating whether it is possible to reduce the amount of fill-in by renumbering the nodes of the matrix
graph, or equivalently, by applying a permutation to the linear system.

Exercise 5.40. Consider the ‘arrow’ matrix with nonzeros only in the first row and column and
on the diagonal:

⎛
⎜
⎜
⎝

∗ ∗ ⋯ ∗
∗ ∗ ∅
⋮ ⋱
∗ ∅ ∗

⎞
⎟
⎟
⎠

What is the number of nonzeros in the matrix, and in the factorization, assuming that
no addition ever results in zero? Can you find a symmetric permutation of the variables
of the problem such that the new matrix has no fill-in?

This example is not typical, but it is true that fill-in estimates can sometimes be improved upon by clever
permuting of the matrix (see for instance section 6.8.1). Even with this, as a rule the statement holds that
an 𝐿𝑈 factorization of a sparse matrix takes considerably more space than the matrix itself. This is one of
the motivating factors for the iterative methods in the next section.

5.4.3.5 Fill-in reducing orderings

Some matrix properties are invariant under symmetric permutations.

Exercise 5.41. In linear algebra classes, you typically look at matrix properties and whether
they are invariant under a change of basis, in particular under unitary basis transforma-
tions:

𝐵 = 𝑉𝐴𝑉 𝑡 , where 𝑉𝑉 𝑡 = 𝐼 .
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Show that a symmetric permutation is a particular change of basis. Name some matrix
properties that do not change under unitary transformations.

Other properties are not: in the previous section you saw that the amount of fill-in is one of those. Thus,
you may wonder what the best ordering is to reduce the fill-in of factoring a given matrix. This problem
is intractable in practice, but various heuristics exist. Some of these heuristics can also be justified from
a point of view of parallelism; in fact, the nested dissection ordering will only be discussed in the section
on parallelism 6.8.1. Here we briefly show two other heuristics that predate the need for parallelism.

First we will look at the Cuthill-McKee ordering which directly minimizes the bandwidth of the permuted
matrix. Since the amount of fill-in can be bounded in terms of the bandwidth, we hope that such a band-
width reducing ordering will also reduce the fill-in.

Secondly, we will consider the minimum degree ordering, which aims more directly for fill-in reduction.

Figure 5.7: Level sets.

5.4.3.5.1 Cuthill-McKee ordering The Cuthill-McKee ordering [37]
is a bandwidth reducing ordering that works by ordering the variables
in level sets; figure 5.7. It considers the adjacency graph of the matrix,
and proceeds as follows:

1. Take an arbitrary node, and call that ‘level zero’.
2. Given a level 𝑛, assign all nodes that are connecting to level 𝑛,

and that are not yet in a level, to level 𝑛 + 1.
3. For the so-called ‘reverse Cuthill-McKee ordering’, reverse the

numbering of the levels.

Exercise 5.42. Show that permuting a matrix according to
the Cuthill-McKee ordering has a block tridiagonal
structure.

We will revisit this algorithm in section 6.10.1 when we consider parallelism.

Of course, one can wonder just how far the bandwidth can be reduced.

Exercise 5.43. The diameter of a graph is defined as the maximum shortest distance between
two nodes.

1. Argue that in the graph of a 2D elliptic problem this diameter is 𝑂(𝑁 1/2).
2. Express the path length between nodes 1 and 𝑁 in terms of the bandwidth.
3. Argue that this gives a lower bound on the diameter, and use this to derive a lower

bound on the bandwidth.

5.4.3.5.2 Minimumdegree ordering Another ordering ismotivated by the observation that the amount
of fill-in is related to the degree of nodes.

Exercise 5.44. Show that eliminating a node with degree 𝑑 leads to at most 2𝑑 fill elements

The so-called minimum degree ordering proceeds as follows:

• Find the node with lowest degree;
• eliminate that node and update the degree information for the remaining nodes;
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• repeat from the first step, with the updated matrix graph.
Exercise 5.45. Indicate a difference between the two above-mentionedmethods. Both are based

on inspection of the matrix graph; however, the minimum degree method requires much
more flexibility in the data structures used. Explain why and discuss two aspects in
detail.

5.5 Iterative methods
Gaussian elimination, the use of an 𝐿𝑈 factorization, is a simple way to find the solution of a linear system,
but as we saw above, in the sort of problems that come from discretized PDEs, it can create a lot of fill-in.
In this section we will look at a completely different approach, iterative solution, where the solution of the
system is found by a sequence of approximations.

The computational scheme looks, very roughly, like:

⎧
⎨
⎩

Choose any starting vector 𝑥0 and repeat for 𝑖 ≥ 0:
𝑥𝑖+1 = 𝐵𝑥𝑖 + 𝑐
until some stopping test is satisfied.

The important feature here is that no systems are solved with the original coefficient matrix; instead,
every iteration involves a matrix-vector multiplication or a solution of a much simpler system. Thus we
have replaced a complicated operation, constructing an 𝐿𝑈 factorization and solving a system with it, by
a repeated simpler and cheaper operation. This makes iterative methods easier to code, and potentially
more efficient.

Let us consider a simple example to motivate the precise definition of the iterative methods. Suppose we
want to solve the system

(
10 0 1
1/2 7 1
1 0 6

)(
𝑥1
𝑥2
𝑥3

) = (
21
9
8
)

which has the solution (2, 1, 1). Suppose you know (for example, from physical considerations) that so-
lution components are roughly the same size. Observe the dominant size of the diagonal, then, to decide
that

(
10

7
6
)(

𝑥1
𝑥2
𝑥3

) = (
21
9
8
)

might be a good approximation. This has the solution (2.1, 9/7, 8/6). Clearly, solving a system that only
involves the diagonal of the original system is both easy to do, and, at least in this case, fairly accurate.

Another approximation to the original system would be to use the lower triangle. The system

(
10
1/2 7
1 0 6

)(
𝑥1
𝑥2
𝑥3

) = (
21
9
8
)
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has the solution (2.1, 7.95/7, 5.9/6). Solving triangular systems is a bit more work than diagonal systems,
but still a lot easier than computing an 𝐿𝑈 factorization. Also, we have not generated any fill-in in the
process of finding this approximate solution.

Thus we see that there are easy to compute ways of getting reasonably close to the solution. Can we
somehow repeat this trick?

Formulated a bit more abstractly, what we did was instead of solving 𝐴𝑥 = 𝑏 we solved 𝐿�̃� = 𝑏. Now
define Δ𝑥 as the distance from the true solution: �̃� = 𝑥 + Δ𝑥 . This gives 𝐴Δ𝑥 = 𝐴�̃� − 𝑏 ≡ 𝑟 , where 𝑟 is the
residual. Next we solve again 𝐿Δ̃𝑥 = 𝑟 and update ̃�̃� = �̃� − Δ̃𝑥 .
iteration 1 2 3
𝑥1 2.1000 2.0017 2.000028
𝑥2 1.1357 1.0023 1.000038
𝑥3 0.9833 0.9997 0.999995

In this case we get two decimals per iteration, which is not typical.

It is now clear why iterative methods can be attractive. Solving a system by Gaussian elimination takes
𝑂(𝑛3) operations, as shown above. A single iteration in a scheme as the above takes 𝑂(𝑛2) operations if
the matrix is dense, and possibly as low as 𝑂(𝑛) for a sparse matrix. If the number of iterations is low, this
makes iterative methods competitive.

Exercise 5.46. When comparing iterative and direct methods, the flop count is not the only
relevant measure. Outline some issues relating to the efficiency of the code in both cases.
Also compare the cases of solving a single linear system and solving multiple.

5.5.1 Abstract presentation

It is time to do a formal presentation of the iterative scheme of the above example. Suppose we want to
solve𝐴𝑥 = 𝑏, and a direct solution is too expensive, but multiplying by𝐴 is feasible. Suppose furthermore
that we have a matrix 𝐾 ≈ 𝐴 such that solving 𝐾𝑥 = 𝑏 can be done cheaply.

Instead of solving 𝐴𝑥 = 𝑏 we solve 𝐾𝑥 = 𝑏, and define 𝑥0 as the solution: 𝐾𝑥0 = 𝑏. This leaves us with an
error 𝑒0 = 𝑥0 − 𝑥 , for which we have the equation 𝐴(𝑥0 − 𝑒0) = 𝑏 or 𝐴𝑒0 = 𝐴𝑥0 − 𝑏. We call 𝑟0 ≡ 𝐴𝑥0 − 𝑏
the residual; the error then satisfies 𝐴𝑒0 = 𝑟0.
If we could solve the error from the equation 𝐴𝑒0 = 𝑟0, we would be done: the true solution is then found
as 𝑥 = 𝑥0 − 𝑒0. However, since solving with 𝐴 was too expensive the first time, we can not do so this time
either, so we determine the error correction approximately. We solve 𝐾 ̃𝑒0 = 𝑟0 and set 𝑥1 ∶= 𝑥0 − ̃𝑒0; the
story can now continue with 𝑒1 = 𝑥1 − 𝑥 , 𝑟1 = 𝐴𝑥1 − 𝑏, 𝐾 ̃𝑒1 = 𝑟1, 𝑥2 = 𝑥1 − ̃𝑒1, et cetera.
The iteration scheme is then:

Let 𝑥0 be given
For 𝑖 ≥ 0:

let 𝑟𝑖 = 𝐴𝑥𝑖 − 𝑏
compute 𝑒𝑖 from 𝐾𝑒𝑖 = 𝑟𝑖
update 𝑥𝑖+1 = 𝑥𝑖 − 𝑒𝑖
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We call the basic scheme

𝑥𝑖+1 = 𝑥𝑖 − 𝐾−1𝑟𝑖 (5.13)

a stationary iteration. It is stationary because every update is performed the sameway, without any depen-
dence on the iteration number. This scheme has a simple analysis, but unfortunately limited applicability.

There are several questions we need to answer about iterative schemes:

• Does this scheme always take us to the solution?
• If the scheme converges, how quickly?
• When do we stop iterating?
• How do we choose 𝐾?

We will now devote some attention to these matters, though a full discussion is beyond the scope of this
book.

5.5.2 Convergence and error analysis

We start with the question of whether the iterative scheme converges, and how quickly. Consider one
iteration step:

𝑟1 = 𝐴𝑥1 − 𝑏 = 𝐴(𝑥0 − ̃𝑒0) − 𝑏
= 𝑟0 − 𝐴𝐾−1𝑟0
= (𝐼 − 𝐴𝐾−1)𝑟0

(5.14)

Inductively we find 𝑟𝑛 = (𝐼 − 𝐴𝐾−1)𝑛𝑟0, so 𝑟𝑛 ↓ 0 if all eigenvalues satisfy |𝜆(𝐼 − 𝐴𝐾−1)| < 11.
This last statement gives us both a condition for convergence, by relating 𝐾 to 𝐴, and a geometric con-
vergence rate, if 𝐾 is close enough.

Exercise 5.47. Derive a similar inductive relation for 𝑒𝑛.
It is hard to determine if the condition |𝜆(𝐼 −𝐴𝐾−1)| < 1 is satisfied by computing the actual eigenvalues.
However, sometimes the Gershgorin theorem (appendix 13.5) gives us enough information.

Exercise 5.48. Consider the matrix 𝐴 of equation (4.56) that we obtained from discretization
of a two-dimensional BVP. Let 𝐾 be matrix containing the diagonal of 𝐴, that is 𝑘𝑖𝑖 = 𝑎𝑖𝑖
and 𝑘𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. Use the Gershgorin theorem to show that |𝜆(𝐼 − 𝐴𝐾−1)| < 1.

The argument in this exercise is hard to generalize for more complicated choices of 𝐾 , such as you will see
below.Herewe only remark that for certainmatrices𝐴, these choices of𝐾 will always lead to convergence,
with a speed that decreases as the matrix size increases. We will not go into the details beyond stating that
for 𝑀-matrices (see section 4.2.2) these iterative methods converge. For more details on the convergence
theory of stationary iterative methods, see [186]

1. This is fairly easy to see in the case where the matrix is diagonalizable and has a full basis of eigenvectors. However, it is
true in the general case too.
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5.5.3 Computational form

Above, in section 5.5.1, we derived stationary iteration as a process that involves multiplying by 𝐴 and
solving with 𝐾 . However, in some cases a simpler implementation is possible. Consider the case where
𝐴 = 𝐾 − 𝑁 , and we know both 𝐾 and 𝑁 . Then we write 𝐴𝑥 = 𝑏 as

𝐾𝑥 = 𝑁𝑥 + 𝑏 (5.15)

and we observe that an 𝑥 satisfying (5.15) is a fixed point of the iteration

𝐾𝑥(𝑛+1) = 𝑁𝑥(𝑖) + 𝑏.

It is easy to see that this is a stationary iteration:

𝐾𝑥(𝑛+1) = 𝑁𝑥(𝑖) + 𝑏
= 𝐾𝑥(𝑛) − 𝐴𝑥(𝑛) + 𝑏
= 𝐾𝑥(𝑛) − 𝑟 (𝑛)

⇒ 𝑥(𝑛+1) = 𝑥(𝑛) − 𝐾−1𝑟 (𝑛).

which is the basic form of equation (5.13). The convergence criterion |𝜆(𝐼 − 𝐴𝐾−1)| < 1 (see above) now
simplifies to |𝜆(𝑁𝐾−1)| < 1.
Let us consider some special cases. First of all, let 𝐾 = 𝐷𝐴, that is, the matrix containing the diagonal part
of 𝐴: 𝑘𝑖𝑖 = 𝑎𝑖𝑖 and 𝑘𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗. Likewise, 𝑛𝑖𝑖 = 0 and 𝑛𝑖𝑗 = −𝑎𝑖𝑗 for all 𝑖 ≠ 𝑗.
This is known as the Jacobi iteration. Thematrix formulation𝐾𝑥(𝑛+1) = 𝑁𝑥(𝑛)+𝑏 can be written pointwise
as

∀𝑖∶ 𝑎𝑖𝑖𝑥(𝑡+1)𝑖 = ∑
𝑗≠𝑖

𝑎𝑖𝑗𝑥(𝑡)𝑗 + 𝑏𝑖 (5.16)

which becomes

for 𝑡 = 1, … until convergence, do:
for 𝑖 = 1… 𝑛:

𝑥(𝑡+1)𝑖 = 𝑎−1𝑖𝑖 (∑𝑗≠𝑖 𝑎𝑖𝑗𝑥(𝑡)𝑗 + 𝑏𝑖)
(Bearing in mind that divisions are relatively costly, see section 1.2, we would actually store the 𝑎−1𝑖𝑖
quantities explicitly, and replace the division by a multiplication.)

This requires us to have one vector 𝑥 for the current iterate 𝑥(𝑡), and one temporary 𝑢 for the next vec-
tor 𝑥(𝑡+1). The easiest way to write this is:

for 𝑡 = 1, … until convergence, do:
for 𝑖 = 1… 𝑛:

𝑢𝑖 = 𝑎−1𝑖𝑖 (−∑𝑗≠𝑖 𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖)
copy 𝑥 ← 𝑢
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Figure 5.8: Data movement pattern in the Jacobi iteration on a one-dimensional problem.

For the simple case of a one-dimensional problem this is illustrated in figure 5.8: in each 𝑥𝑖 point the values
of the two neighbors are combined with the current value to generate a new value. Since the computations
in all the 𝑥𝑖 points are independent, this can be done in parallel on a parallel computer.

But, you might think, in the sum ∑𝑗≠𝑖 𝑎𝑖𝑗𝑥𝑗 why not use the 𝑥(𝑡+1) values for as far as already computed?
In terms of the vectors 𝑥(𝑡) this means

for 𝑘 = 1, … until convergence, do:
for 𝑖 = 1… 𝑛:

𝑥(𝑡+1)𝑖 = 𝑎−1𝑖𝑖 (−∑𝑗<𝑖 𝑎𝑖𝑗𝑥(𝑡+1)𝑗 − ∑𝑗>𝑖 𝑎𝑖𝑗𝑥(𝑡)𝑗 + 𝑏𝑖)

Surprisingly, the implementation is simpler than of the Jacobi method:

for 𝑡 = 1, … until convergence, do:
for 𝑖 = 1… 𝑛:

𝑥𝑖 = 𝑎−1𝑖𝑖 (−∑𝑗≠𝑖 𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖)

If you write this out as a matrix equation, you see that the newly computed elements elements 𝑥(𝑡+1)𝑖 are
multiplied with elements of 𝐷𝐴 + 𝐿𝐴, and the old elements 𝑥(𝑡)𝑗 by 𝑈𝐴, giving

(𝐷𝐴 + 𝐿𝐴)𝑥(𝑘+1) = −𝑈𝐴𝑥(𝑘) + 𝑏
which is called the Gauss-Seidel method.

For the one-dimensional case, the Gauss-Seidel method is illustrated in figure 5.9; every 𝑥𝑖 point still

Figure 5.9: Data movement pattern in the Gauss-Seidel iteration on a one-dimensional problem.

combines its neighbors’ values, but now the left value is actually from the next outer iteration.

Finally, we can insert a damping parameter into the Gauss-Seidel scheme, giving the Successive Over-
Relaxation (SOR) method:

262 Introduction to High Performance Scientific Computing



5.5. Iterative methods

for 𝑡 = 1, … until convergence, do:
for 𝑖 = 1… 𝑛:

𝑥(𝑡+1)𝑖 = 𝜔𝑎−1𝑖𝑖 (−∑𝑗<𝑖 𝑎𝑖𝑗𝑥(𝑡+1)𝑗 − ∑𝑗>𝑖 𝑎𝑖𝑗𝑥(𝑡)𝑗 + 𝑏𝑖) + (1 − 𝜔)𝑥(𝑡)

Surprisingly for something that looks like an interpolation, the method actually works with values for 𝜔
in the range 𝜔 ∈ (0, 2), the optimal value being larger than 1 [94]. Computing the optimal 𝜔 is not simple.

5.5.4 Convergence of the method

We are interested in two questions: firstly whether the iterative method converges at all, and if so, with
what speed. The theory behind these questions goes far beyond this book. Above we remarked that con-
vergence can often be guaranteed for 𝑀-matrices; with regard to the convergence speed a full analysis is
usually only possible in model cases. For the matrices from BVPs, as described in section 4.2.3, we state
without proof that the smallest eigenvalue of the coefficient matrix is 𝑂(ℎ2). The geometric convergence
ratio |𝜆(𝐼 − 𝐴𝐾−1)| derived above can then be shown to be as follows:

• For the Jacobi method, the ratio is 1 − 𝑂(ℎ2);
• For the Gauss-Seidel iteration it also is 1 − 𝑂(ℎ2), but the method converges twice as fast;
• For the SOR method, the optimal omega can improve the convergence factor to 1 − 𝑂(ℎ).

5.5.5 Jacobi versus Gauss-Seidel and parallelism

Above, we mostly looked at the Jacobi, Gauss-Seidel, and SOR methods from a mathematical perspective.
However, such considerations are largely superseded by matters of parallelization on modern computers.

First we observe that all computations in one iteration of the Jacobi method are completely independent,
so they can simply be vectorized or done in parallel. That story is different for Gauss-Seidel (and we
ignore SOR from now on, since it only differs from Gauss-Seidel in the damping parameter): since the
computation of the 𝑥𝑖 points of one iteration are now dependent, this type of iteration is not simple to
vectorize or to implement on a parallel computer.

In many cases, both methods are considered superseded by the CG or Generalized Minimum Residual
(GMRES) methods (sections 5.5.11 and 5.5.13). The Jacobi method is sometimes used as a preconditioner
for these methods. One place where Gauss-Seidel is still popular is as a multigrid smoother . In that case,
parallelism is often found by using a red-black ordering of the variables; section 6.8.2.1.

Further discussion of the issue of parallelism in preconditioners can be found in section 6.7.

5.5.6 Choice of 𝐾
The convergence and error analysis above showed that the closer 𝐾 is to 𝐴, the faster the convergence
will be. In the initial examples we already saw the diagonal and lower triangular choice for 𝐾 . We can
describe these formally by letting 𝐴 = 𝐷𝐴 + 𝐿𝐴 + 𝑈𝐴 be a splitting into diagonal, lower triangular, upper
triangular part of 𝐴. Here are some methods with their traditional names:

• Richardson iteration: 𝐾 = 𝛼𝐼 .
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• Jacobi method: 𝐾 = 𝐷𝐴 (diagonal part),
• Gauss-Seidel method: 𝐾 = 𝐷𝐴 + 𝐿𝐴 (lower triangle, including diagonal)
• The SOR method: 𝐾 = 𝜔−1𝐷𝐴 + 𝐿𝐴
• Symmetric SOR (SSOR) method: 𝐾 = (𝐷𝐴 + 𝐿𝐴)𝐷−1𝐴 (𝐷𝐴 + 𝑈𝐴).
• In iterative refinement we let 𝐾 = 𝐿𝑈 be a true factorization of 𝐴. In exact arithmetic, solving
a system 𝐿𝑈𝑥 = 𝑦 gives you the exact solution, so using 𝐾 = 𝐿𝑈 in an iterative method would
give convergence after one step. In practice, roundoff error will make the solution be inexact, so
people will sometimes iterate a few steps to get higher accuracy.

Exercise 5.49. What is the extra cost of a few steps of iterative refinement over a single system
solution, assuming a dense system?

Exercise 5.50. The Jacobi iteration for the linear system 𝐴𝑥 = 𝑏 is defined as

𝑥𝑖+1 = 𝑥𝑖 − 𝐾−1(𝐴𝑥𝑖 − 𝑏)
where 𝐾 is the diagonal of 𝐴. Show that you can transform the linear system (that is,
find a different coefficient matrix and right hand side vector that will still have the same
solution) so that you can compute the same 𝑥𝑖 vectors but with 𝐾 = 𝐼 , the identity
matrix.
What are the implications of this strategy, in terms of storage and operation counts?
Are there special implications if 𝐴 is a sparse matrix?
Suppose 𝐴 is symmetric. Give a simple example to show that 𝐾−1𝐴 does not have to
be symmetric. Can you come up with a different transformation of the system so that
symmetry of the coefficient matrix is preserved and that has the same advantages as the
transformation above? You can assume that the matrix has positive diagonal elements.

Exercise 5.51. Show that the transformation of the previous exercise can also be done for the
Gauss-Seidel method. Give several reasons why this is not a good idea.

Remark 21 Stationary iteration can be considered as a form of inexact Newton’s method, where each iter-
ation uses the same approximation to the inverse of the derivative. Standard functional analysis results [116]
state how far this approximation can deviate from the exact inverse.

A special case is iterative refinement, where the Newton method should converge in one step, but in practice
takes multiple steps because of roundoff in computer arithmetic. The fact that the Newton method will con-
verge as long as the function (or the residual) is calculated accurately enough, can be exploited by doing the
LU solution in lower precision, thus getting higher performance [26].

There are many different ways of choosing the preconditioner matrix 𝐾 . Some of them are defined alge-
braically, such as the incomplete factorization discussed below. Other choices are inspired by the differ-
ential equation. For instance, if the operator is

𝛿
𝛿𝑥 (𝑎(𝑥, 𝑦)

𝛿
𝛿𝑥 𝑢(𝑥, 𝑦)) +

𝛿
𝛿𝑦 (𝑏(𝑥, 𝑦)

𝛿
𝛿𝑦 𝑢(𝑥, 𝑦)) = 𝑓 (𝑥, 𝑦)

then the matrix 𝐾 could be derived from the operator

𝛿
𝛿𝑥 (�̃�(𝑥)

𝛿
𝛿𝑥 𝑢(𝑥, 𝑦)) +

𝛿
𝛿𝑦 (�̃�(𝑦)

𝛿
𝛿𝑦 𝑢(𝑥, 𝑦)) = 𝑓 (𝑥, 𝑦)
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for some choices of �̃�, �̃�. The second set of equations is called a separable problem, and there are fast solvers
for them, meaning that they have 𝑂(𝑁 log𝑁) time complexity; see [191].

5.5.6.1 Constructing 𝐾 as an incomplete LU factorization

We briefly mention one other choice of 𝐾 , which is inspired by Gaussian elimination. As in Gaussian
elimination, we let 𝐾 = 𝐿𝑈 , but now we use an Incomplete LU (ILU) factorization. Remember that a
regular 𝐿𝑈 factorization is expensive because of the fill-in phenomenon. In an incomplete factorization,
we limit the fill-in artificially.

If we write Gauss elimination as

for k,i,j:
a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]

we define an incomplete variant by

for k,i,j:
if a[i,j] not zero:

a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]

• The resulting factorization is no longer exact: 𝐿𝑈 ≈ 𝐴, so it is called an Incomplete LU (ILU)
factorization.

• An ILU factorization takes much less space than a full factorization: the sparsity of 𝐿 + 𝑈 is the
same as of 𝐴.

The algorithm above is called ‘ILU(0)’, where the zero refers to the fact that absolutely no fill-in is allowed
during the incomplete factorization. Other schemes that allow a limited amount of fill-in exist. Much
more can be said about this method; we will only remark that for 𝑀-matrices this scheme typically gives
a converging method [146].

Exercise 5.52. How do operation counts of the matrix-vector product and solving a system
with an ILU factorization compare?
Recall the discussion of parallelism in the Jacobi versus Gauss-Seidel methods; sec-
tion 5.5.5. How is that for ILU?

You have seen that a full factorization of sparse matrix can need a higher order storage (𝑁 3/2 for the
factorization versus𝑁 for thematrix), but that an incomplete factorization takes𝑂(𝑁 ), just like thematrix.
It may therefore come as a surprise that the error matrix 𝑅 = 𝐴 − 𝐿𝑈 is not dense, but itself sparse.

Exercise 5.53. Let 𝐴 be the matrix of the Laplacian, 𝐿𝑈 an incomplete factorization, and 𝑅 =
𝐴 − 𝐿𝑈 . Show that 𝑅 is a bi-diagonal matrix:

• Consider that 𝑅 consists of those elements that are discarded during the factoriza-
tion. Where are they located in the matrix?

• Alternatively, write out the sparsity pattern of the product 𝐿𝑈 and compare that
to the sparsity pattern of 𝐴.
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5.5.6.2 Cost of constructing a preconditioner

In the example of the heat equation (section 4.3) you saw that each time step involves solving a linear
system. As an important practical consequence, any setup cost for solving the linear system, such as con-
structing the preconditioner, will be amortized over the sequence of systems that is to be solved. A similar
argument holds in the context of nonlinear equations, a topic that we will not discuss as such. Nonlin-
ear equations are solved by an iterative process such as Newton’s method, which in its multidimensional
form leads to a sequence of linear systems. Although these have different coefficient matrices, it is again
possible to amortize setup costs by reusing the preconditioner for a number of Newton steps.

5.5.6.3 Parallel preconditioners

Constructing and using a preconditioner is a balancing act of many considerations: a more accurate pre-
conditioner leads to convergence in fewer iterations, but these iterations can be more expensive; in addi-
tion, a more accurate preconditioner can be more costly to construct. In parallel, this story is even more
complicated, because certain preconditioners are not very parallel to begin with. Therefore, we may ac-
cept a preconditioner that is parallel, but that has a worse iteration count than a serial preconditioner. For
more discussion, see section 6.7.

5.5.7 Stopping tests

The next question we need to tackle is when to stop iterating. Above we saw that the error decreases
geometrically, so clearly we will never reach the solution exactly, even if that were possible in computer
arithmetic. Since we only have this relative convergence behavior, how do we know when we are close
enough?

We would like the error 𝑒𝑖 = 𝑥 − 𝑥𝑖 to be small, but measuring this is impossible. Above we observed that
𝐴𝑒𝑖 = 𝑟𝑖, so

‖𝑒𝑖‖ ≤ ‖𝐴−1‖‖𝑟𝑖‖ ≤ 𝜆max(𝐴−1)‖𝑟𝑖‖
If we know anything about the eigenvalues of 𝐴, this gives us a bound on the error. (The norm of 𝐴 is
only the largest eigenvalue for symmetric 𝐴. In general, we need singular values here.)

Another possibility is to monitor changes in the computed solution. If these are small:

‖𝑥𝑛+1 − 𝑥𝑛‖/‖𝑥𝑛‖ < 𝜖
we can also conclude that we are close to the solution.

Exercise 5.54. Prove an analytic relationship between the distance between iterates and the
distance to the true solution. If your equation contains constants, can they be determined
theoretically or in practice?

Exercise 5.55. Write a simple program to experiment with linear system solving. Take the ma-
trix from the 1D BVP (use an efficient storage scheme) and program an iterative method
using the choice 𝐾 = 𝐷𝐴. Experiment with stopping tests on the residual and the dis-
tance between iterates. How does the number of iterations depend on the size of the
matrix?
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Change the matrix construction so that a certain quantity is added the diagonal, that is,
add 𝛼𝐼 to the original matrix. What happens when 𝛼 > 0? What happens when 𝛼 < 0?
Can you find the value where the behavior changes? Does that value depend on the
matrix size?

5.5.8 Theory of general polynomial iterative methods

Above, you saw iterative methods of the form 𝑥𝑖+1 = 𝑥𝑖 −𝐾−1𝑟𝑖, and we will now see iterative methods of
the more general form

𝑥𝑖+1 = 𝑥𝑖 + ∑
𝑗≤𝑖

𝐾−1𝑟𝑗𝛼𝑗𝑖, (5.17)

that is, using all previous residuals to update the iterate. One might ask, ‘why not introduce an extra
parameter and write 𝑥𝑖+1 = 𝛼𝑖𝑥𝑖 +⋯?’ Here we give a short argument that the former scheme describes a
large class of methods. Indeed, the current author is not aware of methods that fall outside this scheme.

We defined the residual, given an approximate solution �̃� , as ̃𝑟 = 𝐴�̃� − 𝑏. For this general discussion we
precondition the system as 𝐾−1𝐴𝑥 = 𝐾−1𝑏. (See section 5.5.6 where we discussed transforming the linear
system.) The corresponding residual for the initial guess �̃� is

̃𝑟 = 𝐾−1𝐴�̃� − 𝐾−1𝑏.
We now find that

𝑥 = 𝐴−1𝑏 = �̃� − 𝐴−1𝐾 ̃𝑟 = �̃� − (𝐾−1𝐴)−1 ̃𝑟 .
Now, the Cayley-Hamilton theorem states that for every𝐴 there exists a polynomial 𝜙(𝑥) (the characteristic
polynomial) such that

𝜙(𝐴) = 0.
We observe that we can write this polynomial 𝜙 as

𝜙(𝑥) = 1 + 𝑥𝜋(𝑥)
where 𝜋 is another polynomial. Applying this to 𝐾−1𝐴, we have

0 = 𝜙(𝐾−1𝐴) = 𝐼 + 𝐾−1𝐴𝜋(𝐾−1𝐴) ⇒ (𝐾−1𝐴)−1 = −𝜋(𝐾−1𝐴)
so that 𝑥 = �̃� + 𝜋(𝐾−1𝐴) ̃𝑟 . Now, if we let 𝑥0 = �̃� , then ̃𝑟 = 𝐾−1𝑟0, giving the equation

𝑥 = 𝑥0 + 𝜋(𝐾−1𝐴)𝐾−1𝑟0.

This equation suggests an iterative scheme: if we can find a series of polynomials 𝜋 (𝑖) of degree 𝑖 to
approximate 𝜋 , it will give us a sequence of iterates

𝑥𝑖+1 = 𝑥0 + 𝜋 (𝑖)(𝐾−1𝐴)𝐾−1𝑟0 = 𝑥0 + 𝐾−1𝜋 (𝑖)(𝐴𝐾−1)𝑟0 (5.18)

that ultimately reaches the true solution. Based on this use of polynomials in the iterative process, such
methods are called polynomial iterative methods.
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Exercise 5.56. Are stationary iterative methods polynomial methods? Can you make a con-
nection with Horner’s rule?

Multiplying equation (5.18) by 𝐴 and subtracting 𝑏 on both sides gives

𝑟𝑖+1 = 𝑟0 + �̃� (𝑖)(𝐴𝐾−1)𝑟0
where �̃� (𝑖)(𝑥) = 𝑥𝜋 (𝑖)(𝑥). This immediately gives us

𝑟𝑖 = �̂� (𝑖)(𝐴𝐾−1)𝑟0 (5.19)

where �̂� (𝑖) is a polynomial of degree 𝑖 with �̂� (𝑖)(0) = 1. This statement can be used as the basis of a
convergence theory of iterative methods. However, this goes beyond the scope of this book.

Let us look at a couple of instances of equation (5.19). For 𝑖 = 1 we have

𝑟1 = (𝛼1𝐴𝐾−1 + 𝛼2𝐼 )𝑟0 ⇒ 𝐴𝐾−1𝑟0 = 𝛽1𝑟1 + 𝛽0𝑟0
for some values 𝛼𝑖, 𝛽𝑖. For 𝑖 = 2

𝑟2 = (𝛼2(𝐴𝐾−1)2 + 𝛼1𝐴𝐾−1 + 𝛼0)𝑟0
for different values 𝛼𝑖. But we had already established that𝐴𝐾−10 is a combination of 𝑟1, 𝑟0, so nowwe have
that

(𝐴𝐾−1)2𝑟0 ∈ [[𝑟2, 𝑟1, 𝑟0]],
and it is clear how to show inductively that

(𝐴𝐾−1)𝑖𝑟0 ∈ [[𝑟𝑖, … , 𝑟0]]. (5.20)

Substituting this in (5.18) we finally get

𝑥𝑖+1 = 𝑥0 + ∑
𝑗≤𝑖

𝐾−1𝑟𝑗𝛼𝑗𝑖. (5.21)

It is easy to see that the scheme (5.17) is of the form (5.21) and that the reverse implication also holds.

Summarizing, the basis of iterative methods is a scheme where iterates get updated by all residuals com-
puted so far:

𝑥𝑖+1 = 𝑥𝑖 + ∑
𝑗≤𝑖

𝐾−1𝑟𝑗𝛼𝑗𝑖. (5.22)

Compare that to the stationary iteration (section 5.5.1) where the iterates get updated from just the last
residual, and with a coefficient that stays constant.

We can say more about the 𝛼𝑖𝑗 coefficients. If we multiply equation (5.22) by 𝐴, and subtract 𝑏 from both
sides, we find

𝑟𝑖+1 = 𝑟𝑖 + ∑
𝑗≤𝑖

𝐴𝐾−1𝑟𝑗𝛼𝑗𝑖. (5.23)
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Let us consider this equation for a moment. If we have a starting residual 𝑟0, the next residual is computed
as

𝑟1 = 𝑟0 + 𝐴𝐾−1𝑟0𝛼00.
From this we get that 𝐴𝐾−1𝑟0 = 𝛼−100 (𝑟1 − 𝑟0), so for the next residual,

𝑟2 = 𝑟1 + 𝐴𝐾−1𝑟1𝛼11 + 𝐴𝐾−1𝑟0𝛼01
= 𝑟1 + 𝐴𝐾−1𝑟1𝛼11 + 𝛼−100 𝛼01(𝑟1 − 𝑟0)

⇒ 𝐴𝐾−1𝑟1 = 𝛼−111 (𝑟2 − (1 + 𝛼−100 𝛼01)𝑟1 + 𝛼−100 𝛼01𝑟0)
We see that we can express 𝐴𝐾−1𝑟1 as a sum 𝑟2𝛽2 + 𝑟1𝛽1 + 𝑟0𝛽0, and that ∑𝑖 𝛽𝑖 = 0.
Generalizing this, we find (with different 𝛼𝑖𝑗 than above)

𝑟𝑖+1 = 𝑟𝑖 + 𝐴𝐾−1𝑟𝑖𝛿𝑖 + ∑𝑗≤𝑖+1 𝑟𝑗𝛼𝑗𝑖
𝑟𝑖+1(1 − 𝛼𝑖+1,𝑖) = 𝐴𝐾−1𝑟𝑖𝛿𝑖 + 𝑟𝑖(1 + 𝛼𝑖𝑖) + ∑𝑗<𝑖 𝑟𝑗𝛼𝑗𝑖

𝑟𝑖+1𝛼𝑖+1,𝑖 = 𝐴𝐾−1𝑟𝑖𝛿𝑖 + ∑𝑗≤𝑖 𝑟𝑗𝛼𝑗𝑖 substituting
𝛼𝑖𝑖 ∶= 1 + 𝛼𝑖𝑖
𝛼𝑖+1,𝑖 ∶= 1 − 𝛼𝑖+1,𝑖

note that 𝛼𝑖+1,𝑖 = ∑𝑗≤𝑖 𝛼𝑗𝑖
𝑟𝑖+1𝛼𝑖+1,𝑖𝛿−1𝑖 = 𝐴𝐾−1𝑟𝑖 + ∑𝑗≤𝑖 𝑟𝑗𝛼𝑗𝑖𝛿−1𝑖
𝑟𝑖+1𝛼𝑖+1,𝑖𝛿−1𝑖 = 𝐴𝐾−1𝑟𝑖 + ∑𝑗≤𝑖 𝑟𝑗𝛼𝑗𝑖𝛿−1𝑖

𝑟𝑖+1𝛾𝑖+1,𝑖 𝐴𝐾−1𝑟𝑖 + ∑𝑗≤𝑖 𝑟𝑗𝛾𝑗𝑖 substituting 𝛾𝑖𝑗 = 𝛼𝑖𝑗𝛿−1𝑗
and we have that 𝛾𝑖+1,𝑖 = ∑𝑗≤𝑖 𝛾𝑗𝑖.
We can take this last equation and write it as 𝐴𝐾−1𝑅 = 𝑅𝐻 where

𝐻 =
⎛
⎜
⎜
⎝

−𝛾11 −𝛾12 …
𝛾21 −𝛾22 −𝛾23 …
0 𝛾32 −𝛾33 −𝛾34
∅ ⋱ ⋱ ⋱ ⋱

⎞
⎟
⎟
⎠

In this, 𝐻 is a so-called Hessenberg matrix: it is upper triangular plus a single lower subdiagonal. Also we
note that the elements of 𝐻 in each column sum to zero.

Because of the identity 𝛾𝑖+1,𝑖 = ∑𝑗≤𝑖 𝛾𝑗𝑖 we can subtract 𝑏 from both sides of the equation for 𝑟𝑖+1 and
‘divide out 𝐴’, giving

𝑥𝑖+1𝛾𝑖+1,𝑖 = 𝐾−1𝑟𝑖 + ∑
𝑗≤𝑖

𝑥𝑗𝛾𝑗𝑖.

This gives us the general form for iterative methods:

⎧
⎨
⎩

𝑟𝑖 = 𝐴𝑥𝑖 − 𝑏
𝑥𝑖+1𝛾𝑖+1,𝑖 = 𝐾−1𝑟𝑖 + ∑𝑗≤𝑖 𝑥𝑗𝛾𝑗𝑖
𝑟𝑖+1𝛾𝑖+1,𝑖 = 𝐴𝐾−1𝑟𝑖 + ∑𝑗≤𝑖 𝑟𝑗𝛾𝑗𝑖

where 𝛾𝑖+1,𝑖 = ∑𝑗≤𝑖 𝛾𝑗𝑖. (5.24)

This form holds for many iterative methods, including the stationary iterative methods you have seen
above. In the next sections you will see how the 𝛾𝑖𝑗 coefficients follow from orthogonality conditions on
the residuals.
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5.5.9 Iterating by orthogonalization

The stationary methods described above (section 5.5.1) have been around in some form or another for
a long time: Gauss described some variant in a letter to a student. They were perfected in the thesis of
Young [198] in 1950; the final reference is probably the book by Varga [186]. These methods are little used
these days, except in the specialized context of multigrid smoothers, a topic not discussed in this course.

At almost the same time, the field of methods based on orthogonalization was kicked off by two pa-
pers [129, 102], though it took a few decades for them to find wide applicability. (For further history,
see [79].)

The basic idea is as follows:

If you can make all your residuals orthogonal to each other, and the matrix is of dimen-
sion 𝑛, then after 𝑛 iterations you have to have converged: it is not possible to have an
𝑛 + 1-st residual that is orthogonal to all previous and nonzero. Since a zero residual
means that the corresponding iterate is the solution, we conclude that after 𝑛 iterations
we have the true solution in hand.

With the size of matrices that contemporary applications generate this reasoning is no longer relevant:
it is not computationally realistic to iterate for 𝑛 iterations. Moreover, roundoff will probably destroy any
accuracy of the solution. However, it was later realized [165] that such methods are a realistic option in
the case of symmetric positive definite (SPD) matrices. The reasoning is then:

The sequence of residuals spans a series of subspaces of increasing dimension, and by
orthogonalizing, the new residuals are projected on these spaces. This means that they
will have decreasing sizes.

Figure 5.10: The optimal update 𝑢𝑚 make the new residual orthogonal to the 𝐴𝐾𝑚 subspace.

This is illustrated in figure 5.10.

In this section you will see the basic idea of iterating by orthogonalization. The method presented here
is only of theoretical interest; next you will see the Conjugate Gradients (CG) and Generalized Minimum
Residual (GMRES) methods that are the basis of many real-life applications.

Let us now take the basic scheme (5.24) and orthogonalize the residuals. Instead of the normal inner
product we use the 𝐾−1-inner product:

(𝑥, 𝑦)𝐾−1 = 𝑥 𝑡𝐾−1𝑦
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and we will force residuals to be 𝐾−1-orthogonal:

∀𝑖≠𝑗 ∶ 𝑟𝑖 ⟂𝐾−1 𝑟𝑗 ⇔ ∀𝑖≠𝑗 ∶ 𝑟𝑖𝐾−1𝑟𝑗 = 0

This is known as the Full Orthogonalization Method (FOM) scheme:

Let 𝑟0 be given
For 𝑖 ≥ 0:

let 𝑠 ← 𝐾−1𝑟𝑖
let 𝑡 ← 𝐴𝐾−1𝑟𝑖
for 𝑗 ≤ 𝑖:

let 𝛾𝑗 be the coefficient so that 𝑡 − 𝛾𝑗 𝑟𝑗 ⟂ 𝑟𝑗
for 𝑗 ≤ 𝑖:

form 𝑠 ← 𝑠 − 𝛾𝑗𝑥𝑗
and 𝑡 ← 𝑡 − 𝛾𝑗 𝑟𝑗

let 𝑥𝑖+1 = (∑𝑗 𝛾𝑗)−1𝑠, 𝑟𝑖+1 = (∑𝑗 𝛾𝑗)−1𝑡 .

You may recognize the Gram-Schmidt orthogonalization in this (see appendix 13.2 for an explanation): in
each iteration 𝑟𝑖+1 is initially set to 𝐴𝐾−1𝑟𝑖, and orthogonalized against 𝑟𝑗 with 𝑗 ≤ 𝑖.
We can use modified Gram-Schmidt by rewriting the algorithm as:

Let 𝑟0 be given
For 𝑖 ≥ 0:

let 𝑠 ← 𝐾−1𝑟𝑖
let 𝑡 ← 𝐴𝐾−1𝑟𝑖
for 𝑗 ≤ 𝑖:

let 𝛾𝑗 be the coefficient so that 𝑡 − 𝛾𝑗 𝑟𝑗 ⟂ 𝑟𝑗
form 𝑠 ← 𝑠 − 𝛾𝑗𝑥𝑗
and 𝑡 ← 𝑡 − 𝛾𝑗 𝑟𝑗

let 𝑥𝑖+1 = (∑𝑗 𝛾𝑗)−1𝑠, 𝑟𝑖+1 = (∑𝑗 𝛾𝑗)−1𝑡 .

These two version of the FOM algorithm are equivalent in exact arithmetic, but differ in practical circum-
stances in two ways:

• The modified Gram-Schmidt method is more numerically stable;
• The unmodified method allows you to compute all inner products simultaneously, which cuts
down on network latency. We discuss this below in sections 6.1.3, 6.6.1.2, 6.6.

Even though the FOM algorithm is not used in practice, these computational considerations carry over to
the GMRES method below.

5.5.10 Coupled recurrences form of iterative methods

Above, you saw the general equation (5.24) for generating iterates and search directions. This equation is
often split as
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• An update of the 𝑥𝑖 iterate from a single search direction:

𝑥𝑖+1 = 𝑥𝑖 − 𝛿𝑖𝑝𝑖,
and

• A construction of the search direction from the residuals known so far:

𝑝𝑖 = 𝐾−1𝑟𝑖 + ∑
𝑗<𝑖

𝛽𝑖𝑗𝐾−1𝑟𝑗 .

It is not hard to see inductively that we can also define

𝑝𝑖 = 𝐾−1𝑟𝑖 + ∑
𝑗<𝑖

𝛾𝑗𝑖𝑝𝑗 ,

and this last form is the one that is used in practice.

The iteration dependent coefficients are typically chosen to let the residuals satisfy various orthogonality
conditions. For instance, one can choose to let themethod be defined by letting the residuals be orthogonal
(𝑟 𝑡𝑖 𝑟𝑗 = 0 if 𝑖 ≠ 𝑗), or𝐴-orthogonal (𝑟 𝑡𝑖 𝐴𝑟𝑗 = 0 if 𝑖 ≠ 𝑗). Manymore schemes exist. Suchmethods can converge
much faster than stationary iteration, or converge for a wider range of matrix and preconditioner types.
Below we will see two such methods; their analysis, however, is beyond the scope of this course.

5.5.11 The method of Conjugate Gradients

In this section, we will derive the Conjugate Gradients (CG) method, which is a specific implementation of
the FOM algorithm. In particular, it has pleasant computational properties in the case of an SPD matrix 𝐴.

The CG method takes as its basic form the coupled recurrences formulation described above, and the
coefficients are defined by demanding that the sequence of residuals 𝑟0, 𝑟1, 𝑟2, … satisfy

𝑟 𝑡𝑖 𝐾−1𝑟𝑗 = 0 if 𝑖 ≠ 𝑗.
We start by deriving the CG method for nonsymmetric systems, and then show how it simplifies in the
symmetric case. (The approach here is taken from [58]).

The basic equations are

⎧
⎨
⎩

𝑥𝑖+1 = 𝑥𝑖 − 𝛿𝑖𝑝𝑖
𝑟𝑖+1 = 𝑟𝑖 − 𝛿𝑖𝐴𝑝𝑖
𝑝𝑖+1 = 𝐾−1𝑟𝑖+1 + ∑𝑗≤𝑖 𝛾𝑗𝑖+1𝑝𝑗 ,

(5.25)

where the first and third equation were introduced above, and the second can be found by multiplying
the first by 𝐴 (check this!).

We will now derive the coefficients in this method by induction. In essence, we assume that we have
current residual 𝑟cur, a residuals to be computed 𝑟new, and a collection of known residuals 𝑅old. Rather
than using subscripts ‘old, cur, new’, we use the following convention:
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• 𝑥1, 𝑟1, 𝑝1 are the current iterate, residual, and search direction. Note that the subscript 1 does not
denote the iteration number here.

• 𝑥2, 𝑟2, 𝑝2 are the iterate, residual, and search direction that we are about to compute. Again, the
subscript does not equal the iteration number.

• 𝑋0, 𝑅0, 𝑃0 are all previous iterates, residuals, and search directions bundled together in a block of
vectors.

In terms of these quantities, the update equations are then

⎧
⎨
⎩

𝑥2 = 𝑥1 − 𝛿1𝑝1
𝑟2 = 𝑟1 − 𝛿𝑖𝐴𝑝1
𝑝2 = 𝐾−1𝑟2 + 𝜐12𝑝1 + 𝑃0𝑢02

(5.26)

where 𝛿1, 𝜐12 are scalars, and 𝑢02 is a vector with length the number of iterations before the current. We
now derive 𝛿1, 𝜐12, 𝑢02 from the orthogonality of the residuals. To be specific, the residuals have to be
orthogonal under the 𝐾−1 inner product: we want to have

𝑟 𝑡2𝐾−1𝑟1 = 0, 𝑟 𝑡2𝐾−1𝑅0 = 0.
Combining these relations gives us, for instance,

𝑟 𝑡1𝐾−1𝑟2 = 0
𝑟2 = 𝑟1 − 𝛿𝑖𝐴𝐾−1𝑝1 } ⇒ 𝛿1 = 𝑟 𝑡1𝐾−1𝑟1

𝑟 𝑡1𝐾−1𝐴𝑝1
.

Finding 𝜐12, 𝑢02 is a little harder. For this, we start by summarizing the relations for the residuals and
search directions in equation (5.25) in block form as

(𝑅0, 𝑟1, 𝑟2)
⎛
⎜
⎜
⎜
⎝

1
−1 1

⋱ ⋱
−1 1

−1 1

⎞
⎟
⎟
⎟
⎠

= 𝐴(𝑃0, 𝑝1, 𝑝2) diag(𝐷0, 𝑑1, 𝑑2)

(𝑃0, 𝑝1, 𝑝2) (
𝐼 − 𝑈00 −𝑢01 −𝑢02

1 −𝜐12
1

) = 𝐾−1(𝑅0, 𝑟1, 𝑟2)

or abbreviated 𝑅𝐽 = 𝐴𝑃𝐷, 𝑃(𝐼 − 𝑈 ) = 𝑅 where 𝐽 is the matrix with identity diagonal and minus identity
subdiagonal. We then observe that

• 𝑅𝑡𝐾−1𝑅 is diagonal, expressing the orthogonality of the residuals.
• Combining that 𝑅𝑡𝐾−1𝑅 is diagonal and 𝑃(𝐼 − 𝑈 ) = 𝑅 gives that 𝑅𝑡𝑃 = 𝑅𝑡𝐾−1𝑅(𝐼 − 𝑈 )−1. We
now reason that (𝐼 − 𝑈 )−1 is upper diagonal, so 𝑅𝑡𝑃 is upper triangular. This tells us quantities
such as 𝑟 𝑡2𝑝1 are zero.

• Combining the relations for 𝑅 and 𝑃 , we get first that

𝑅𝑡𝐾−𝑡𝐴𝑃 = 𝑅𝑡𝐾−𝑡𝑅𝐽𝐷−1
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which tells us that 𝑅𝑡𝐾−𝑡𝐴𝑃 is lower bidiagonal. Expanding 𝑅 in this equation gives

𝑃 𝑡𝐴𝑃 = (𝐼 − 𝑈 )−𝑡𝑅𝑡𝑅𝐽𝐷−1.
Here 𝐷 and 𝑅𝑡𝐾−1𝑅 are diagonal, and (𝐼 − 𝑈 )−𝑡 and 𝐽 are lower triangular, so 𝑃 𝑡𝐴𝑃 is lower
triangular.

• This tells us that 𝑃 𝑡0𝐴𝑝2 = 0 and 𝑝𝑡1𝐴𝑝2 = 0.
• Taking the product of 𝑃 𝑡0𝐴, 𝑝𝑡1𝐴 with the definition of 𝑝2 in equation (5.26) gives

𝑢02 = −(𝑃 𝑡0𝐴𝑃0)−1𝑃 𝑡0𝐴𝐾−1𝑟2, 𝜐12 = −(𝑝𝑡1𝐴𝑝1)−1𝑝𝑡1𝐴𝐾−1𝑟2.
• If 𝐴 is symmetric, 𝑃 𝑡𝐴𝑃 is lower triangular (see above) and symmetric, so it is in fact diago-
nal. Also, 𝑅𝑡𝐾−𝑡𝐴𝑃 is lower bidiagonal, so, using 𝐴 = 𝐴𝑡 , 𝑃 𝑡𝐴𝐾−1𝑅 is upper bidiagonal. Since
𝑃 𝑡𝐴𝐾−1𝑅 = 𝑃 𝑡𝐴𝑃(𝐼 − 𝑈 ), we conclude that 𝐼 − 𝑈 is upper bidiagonal, so, only in the symmetric
case, 𝑢02 = 0.

Some observations about this derivation.

• Strictly speaking we are only proving necessary relations here. It can be shown that these are
sufficient too.

• There are different formulas that wind up computing the same vectors, in exact arithmetic. For
instance, it is easy to derive that 𝑝𝑡1𝑟1 = 𝑟 𝑡1𝑟1, so this can be substituted in the formulas just derived.
The implementation of the CG method as it is typically implemented, is given in figure 5.11.

• In the 𝑘-th iteration, computing 𝑃 𝑡0𝐴𝑟2 (which is needed for 𝑢02) takes 𝑘 inner products. First of
all, inner products are disadvantageous in a parallel context. Secondly, this requires us to store all
search directions indefinitely. This second point implies that both work and storage go up with
the number of iterations. Contrast this with the stationary iteration scheme, where storage was
limited to the matrix and a few vectors, and work in each iteration was the same.

• The objections just raised disappear in the symmetric case. Since 𝑢02 is zero, the dependence on
𝑃0 disappears, and only the dependence on 𝑝1 remains. Thus, storage is constant, and the amount
of work per iteration is constant. The number of inner products per iteration can be shown to be
just two.

Exercise 5.57. Do a flop count of the various operations in one iteration of the CG method.
Assume that 𝐴 is the matrix of a five-point stencil and that the preconditioner 𝑀 is an
incomplete factorization of 𝐴 (section 5.5.6.1). Let 𝑁 be the matrix size.

5.5.12 Derivation from minimization

The above derivation of the CG method is not often found in the literature. The typical derivation starts
with a minimization problem with a symmetric positive definite (SPD) matrix 𝐴:

For which vector 𝑥 with ‖𝑥‖ = 1 is 𝑓 (𝑥) = 1/2 𝑥 𝑡𝐴𝑥 − 𝑏𝑡𝑥 minimal? (5.27)

If we accept the fact that the function 𝑓 has a minimum, which follows from the positive definiteness, we
find the minimum by computing the derivative

𝑓 ′(𝑥) = 𝐴𝑥 − 𝑏.
and asking where 𝑓 ′(𝑥) = 0. And, presto, there we have the original linear system.
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Compute 𝑟 (0) = 𝐴𝑥(0) − 𝑏 for some initial guess 𝑥(0)
for 𝑖 = 1, 2, …

solve 𝐾𝑧(𝑖−1) = 𝑟 (𝑖−1)
𝜌𝑖−1 = 𝑟 (𝑖−1)𝑇 𝑧(𝑖−1)
if 𝑖 = 1

𝑝(1) = 𝑧(0)
else

𝛽𝑖−1 = 𝜌𝑖−1/𝜌𝑖−2
𝑝(𝑖) = 𝑧(𝑖−1) + 𝛽𝑖−1𝑝(𝑖−1)

endif
𝑞(𝑖) = 𝐴𝑝(𝑖)

𝛿𝑖 = 𝜌𝑖−1/𝑝(𝑖)𝑇 𝑞(𝑖)
𝑥(𝑖) = 𝑥(𝑖−1) − 𝛿𝑖𝑝(𝑖)
𝑟 (𝑖) = 𝑟 (𝑖−1) − 𝛿𝑖𝑞(𝑖)
check convergence; continue if necessary

end

Figure 5.11: The Preconditioned Conjugate Gradient Method.

Exercise 5.58. Derive the derivative formula above. (Hint: write out the definition of derivative
as limℎ↓0 ….) Note that this requires 𝐴 to be symmetric.

For the derivation of the iterative method, we state that the iterate 𝑥𝑖 is updated with a certain step size 𝛿𝑖
along a search direction 𝑝𝑖:

𝑥𝑖+1 = 𝑥𝑖 + 𝑝𝑖𝛿𝑖
The optimal step size

𝛿𝑖 =
𝑟 𝑡𝑖 𝑝𝑖

𝑝𝑡1𝐴𝑝𝑖
is then derived as the one that minimizes the function 𝑓 along the line 𝑥𝑖 + 𝛿𝛿𝑝𝑖:

𝛿𝑖 = argmin
𝛿

‖𝑓 (𝑥𝑖 + 𝑝𝑖𝛿)‖

The construction of the search direction from the residuals follows by induction proof from the require-
ment that the residuals be orthogonal. For a typical proof, see [5].

5.5.13 GMRES

In the discussion of the CG method above, it was pointed out that orthogonality of the residuals requires
storage of all residuals, and 𝑘 inner products in the 𝑘’th iteration. Unfortunately, it can be proved that the
work savings of the CG method can, for all practical purposes, not be found outside of SPD matrices [60].
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The GMRES method is a popular implementation of such full orthogonalization schemes. In order to keep
the computational costs within bounds, it is usually implemented as a restarted method. That is, only a
certain number (say 𝑘 = 5 or 20) of residuals is retained, and every 𝑘 iterations the method is restarted.

Other methods exist that do not have the growing storage demands of GMRES, for instance QMR [67]
and BiCGstab [185]. Even though by the remark above these can not orthogonalize the residuals, they are
still attractive in practice.

5.5.14 Convergence and complexity

The efficiency of Gaussian elimination was fairly easy to assess: factoring and solving a system takes,
deterministically, 1

3𝑛3 operations. For an iterative method, the operation count is the product of the num-
ber of operations per iteration times the number of iterations. While each individual iteration is easy to
analyze, there is no good theory to predict the number of iterations. (In fact, an iterative method may not
even converge to begin with.)

The one basic theorem is that for CG

#it ∼ √𝜅(𝐴)
while for second-order PDEs

𝜅(𝐴) ∼ ℎ−2 = 𝑁 ,
with 𝑁 the matrix size.

The influence of the preconditioner is harder to quantify. For many preconditioners, such as ILU,

𝜅(𝑀−1𝐴) ∼ 𝑁 ,
but with a lower proportionality constant. Much research has gone into preconditioners that achieve an
order improvement:

𝜅(𝑀−1𝐴) ∼ √𝑁 .
However, this is often only provable in restricted cases, such as M-matrices [91, 11]. Even more restricted
is multigrid[22], which ideally can achieve

𝜅(𝑀−1𝐴) = 𝑂(1).

A final consideration in evaluation the efficiency of iterative methods related to processor utilization.
Gaussian elimination can be coded in such a way that there is considerable cache reuse, making the
algorithm run at a fair percentage of the computer’s peak speed. Iterative methods, on the other hand, are
much slower on a flops per second basis.

All these considerations make the application of iterative methods to linear system solving somewhere
in between a craft and a black art. In practice, people do considerable experimentation to decide whether
an iterative method will pay off, and if so, which method is preferable.
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5.6 Eigenvalue methods

In this chapter we have so far limited ourselves to linear system solving. Eigenvalue problems are another
important category of linear algebra applications, but their interest lies more in the mathematics than the
computations as such. We give a brief outline of the type of computations involved.

5.6.1 Power method

The power method is a simple iteration process (see appendix 13.3 for details): given a matrix 𝐴 and an
arbitrary starting vector 𝑣 , compute repeatedly

𝑣 ← 𝐴𝑣, 𝑣 ← 𝑣/‖𝑣‖.

The vector 𝑣 quickly becomes the eigenvector corresponding to the eigenvalue with maximum absolute
size, and so ‖𝐴𝑣‖/‖𝑣‖ becomes an approximation to that largest eigenvalue.

Applying the power method to𝐴−1 is known as inverse iteration and it yields the inverse of the eigenvalue
that is smallest in absolute magnitude.

Another variant of the power method is the shift-and-inverse iteration which can be used to find interior
eigenvalues. If 𝜎 is close to an interior eigenvalue, then inverse iteration on 𝐴 − 𝜎𝐼 will find that interior
eigenvalue.

5.6.2 Orthogonal iteration schemes

The fact that eigenvectors to different eigenvalues are orthogonal can be exploited. For instance, after
finding one eigenvector, one could iterate in the subspace orthogonal to that. Another option is to iterate
on a block of vectors, and orthogonalizing this block after each power method iteration. This produces as
many dominant eigenvalue as the block size. The restarted Arnoldi method [134] is an example of such a
scheme.

5.6.3 Full spectrum methods

The iterative schemes just discussed yield only localized eigenvalues. Other methods compute the full
spectrum of a matrix. The most popular of these is the QR method.

5.7 Further Reading

Iterative methods is a very deep field. As a practical introduction to the issues involved, you can read the
‘Templates book’ [9], online at http://netlib.org/templates/. For a deeper treatment of the theory,
see the book by Saad [166] of which the first edition can be downloaded at http://www-users.cs.umn.
edu/~saad/books.html.
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Chapter 6

High performance linear algebra

In this section we will discuss a number of issues pertaining to linear algebra on parallel computers.
We will take a realistic view of this topic, assuming that the number of processors is finite, and that
the problem data is always large, relative to the number of processors. We will also pay attention to the
physical aspects of the communication network between the processors.

We will analyze various linear algebra operations, including iterative methods for the solution of linear
systems of equation (if we sometimes just refer to ‘iterative methods’, the qualification to systems of linear
equations is implicit), and their behavior in the presence of a network with finite bandwidth and finite
connectivity.

6.1 Collective operations

Collective operations are an artifact of distributed memory parallelism; see section 2.4 for a discussion.
Mathematically they describe extremely simple operations such as summing an array of numbers. How-
ever, since these numbers can be on different processors, each with their own memory space, this opera-
tion becomes computationally non-trivial and worthy of study.

Collective operations play an important part in linear algebra operations. In fact, the scalability of even
simple operations such as a matrix-vector product can depend on the cost of these collectives as you will
see below. We start with a short discussion of the essential ideas behind collectives; see [29] for details.
We will then see an important application in section 6.2, and various other places.

In computing the cost of a collective operation, three architectural constants are enough to give lower
bounds: 𝛼 , the latency of sending a single message, 𝛽 , the inverse of the bandwidth for sending data (see
section 1.3.2), and 𝛾 , the inverse of the computation rate, the time for performing an arithmetic operation.
Sending 𝑛 data items then takes time 𝛼+𝛽𝑛. We further assume that a processor can only send onemessage
at a time. We make no assumptions about the connectivity of the processors (see section 2.7 for this); thus,
the lower bounds derived here will hold for a wide range of architectures.

The main implication of the architectural model above is that the number of active processors can only
double in each step of an algorithm. For instance, to do a broadcast, first processor 0 sends to 1, then
0 and 1 can send to 2 and 3, then 0–3 send to 4–7, et cetera. This cascade of messages is called a minimum
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spanning tree of the processor network, and it follows that any collective algorithm has at least 𝛼 log2 𝑝
cost associated with the accumulated latencies.

6.1.1 Broadcast

In a broadcast operation, a single processor has 𝑛 data elements that it needs to send to all others: the
other processors need a full copy of all 𝑛 elements. By the above doubling argument, we conclude that
a broadcast to 𝑝 processors takes time at least ⌈log2 𝑝⌉ steps with a total latency of ⌈log2 𝑝⌉𝛼 . Since 𝑛
elements are sent, this adds at least a time 𝑛𝛽 for all elements to leave the sending processor, giving a total
cost lower bound of

⌈log2 𝑝⌉𝛼 + 𝑛𝛽.

We can illustrate the spanning tree method as follows:

𝑡 = 1 𝑡 = 2 𝑡 = 3
𝑝0 𝑥0 ↓, 𝑥1 ↓, 𝑥2 ↓, 𝑥3 ↓ 𝑥0 ↓, 𝑥1 ↓, 𝑥2 ↓, 𝑥3 ↓ 𝑥0, 𝑥1, 𝑥2, 𝑥3
𝑝1 𝑥0 ↓, 𝑥1 ↓, 𝑥2 ↓, 𝑥3 ↓ 𝑥0, 𝑥1, 𝑥2, 𝑥3
𝑝2 𝑥0, 𝑥1, 𝑥2, 𝑥3
𝑝3 𝑥0, 𝑥1, 𝑥2, 𝑥3

(On 𝑡 = 1, 𝑝0 sends to 𝑝1; on 𝑡 = 2 𝑝0, 𝑝1 send to 𝑝2, 𝑝3.) This algorithm has the correct log2 𝑝 ⋅ 𝛼 term,
but processor 0 repeatedly sends the whole vector, so the bandwidth cost is log2 𝑝 ⋅ 𝑛𝛽 . If 𝑛 is small, the
latency cost dominates, so we may characterize this as a short vector collective operation

The following algorithm implements the broadcast as a combination of a scatter and a bucket brigade
algorithm. First the scatter:

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3
𝑝0 𝑥0 ↓, 𝑥1, 𝑥2, 𝑥3 𝑥0, 𝑥1 ↓, 𝑥2, 𝑥3 𝑥0, 𝑥1, 𝑥2 ↓, 𝑥3 𝑥0, 𝑥1, 𝑥2, 𝑥3 ↓
𝑝1 𝑥1
𝑝2 𝑥2
𝑝3 𝑥3

This involves 𝑝 − 1 messages of size 𝑁/𝑝, for a total time of

𝑇scatter(𝑁 , 𝑃) = (𝑝 − 1)𝛼 + (𝑝 − 1) ⋅ 𝑁𝑝 ⋅ 𝛽.

Then the bucket brigade has each processor active in every step, accepting a partial message (except in
the first step), and passing it on to the next processor.

𝑡 = 0 𝑡 = 1 𝑒𝑡𝑐𝑒𝑡𝑒𝑟𝑎
𝑝0 𝑥0 ↓ 𝑥0 𝑥3 ↓ 𝑥0, 𝑥2, 𝑥3
𝑝1 𝑥1 ↓ 𝑥0 ↓, 𝑥1 𝑥0, 𝑥1, 𝑥3
𝑝2 𝑥2 ↓ 𝑥1 ↓, 𝑥2 𝑥0, 𝑥1, 𝑥2
𝑝3 𝑥3 ↓ 𝑥2 ↓, 𝑥3 𝑥1, 𝑥2, 𝑥3
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Each partial message gets sent 𝑝 − 1 times, so this stage also has a complexity of

𝑇bucket(𝑁 , 𝑃) = (𝑝 − 1)𝛼 + (𝑝 − 1) ⋅ 𝑁𝑝 ⋅ 𝑏𝑒𝑡𝑎.

The complexity now becomes

2(𝑝 − 1)𝛼 + 2𝛽𝑛(𝑝 − 1)/𝑝
which is not optimal in latency, but is a better algorithm if 𝑛 is large, making this a long vector collective
operation.

6.1.2 Reduction

In a reduction operation, each processor has 𝑛 data elements, and one processor needs to combine them
elementwise, for instance computing 𝑛 sums or products.

By running the broadcast backwards in time, we see that a reduction operation has the same lower bound
on the communication of ⌈log2 𝑝⌉𝛼 + 𝑛𝛽 . A reduction operation also involves computation, which would
take a total time of (𝑝 − 1)𝛾𝑛 sequentially: each of 𝑛 items gets reduced over 𝑝 processors. Since these
operations can potentially be parallelized, the lower bound on the computation is 𝑝−1

𝑝 𝛾𝑛, giving a total of

⌈log2 𝑝⌉𝛼 + 𝑛𝛽 + 𝑝 − 1
𝑝 𝛾𝑛.

We illustrate the spanning tree algorithm, using the notation 𝑥(𝑗)𝑖 for the data item 𝑖 that was originally

on processor 𝑗, and 𝑥(𝑗∶𝑘)𝑖 for the sum of the items 𝑖 of processors 𝑗 … 𝑘.

𝑡 = 1 𝑡 = 2 𝑡 = 3
𝑝0 𝑥(0)0 , 𝑥(0)1 , 𝑥(0)2 , 𝑥(0)3 𝑥(0∶1)0 , 𝑥(0∶1)1 , 𝑥(0∶1)2 , 𝑥(0∶1)3 𝑥(0∶3)0 , 𝑥(0∶3)1 , 𝑥(0∶3)2 , 𝑥(0∶3)3
𝑝1 𝑥(1)0 ↑, 𝑥(1)1 ↑, 𝑥(1)2 ↑, 𝑥(1)3 ↑
𝑝2 𝑥(2)0 , 𝑥(2)1 , 𝑥(2)2 , 𝑥(2)3 𝑥(2∶3)0 ↑, 𝑥(2∶3)1 ↑, 𝑥(2∶3)2 ↑, 𝑥(2∶3)3 ↑
𝑝3 𝑥(3)0 ↑, 𝑥(3)1 ↑, 𝑥(3)2 ↑, 𝑥(3)3 ↑

On time 𝑡 = 1 processors 𝑝0, 𝑝2 receive from 𝑝1, 𝑝3, and on 𝑡 = 2 𝑝0 receives from 𝑝2.
As with the broadcast above, this algorithm does not achieve the lower bound; instead it has a complexity

⌈log2 𝑝⌉(𝛼 + 𝑛𝛽 + 𝑝 − 1
𝑝 𝛾𝑛).

For short vectors the 𝛼 term dominates, so this algorithm is sufficient. For long vectors one can, as above,
use other algorithms [29].

A long vector reduction can be done using a bucket brigade followed by a gather. The complexity is as
above, except that the bucket brigade performs partial reductions, for a time of 𝛾 (𝑝 − 1)𝑁/𝑝. The gather
performs no further operations.
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6.1.3 Allreduce

An allreduce operation computes the same elementwise reduction of 𝑛 elements on each processor, but
leaves the result on each processor, rather than just on the root of the spanning tree. This could be im-
plemented as a reduction followed by a broadcast, but more clever algorithms exist.

𝑡 = 1 𝑡 = 2 𝑡 = 3
𝑝0 𝑥(0)0 ↓, 𝑥(0)1 ↓, 𝑥(0)2 ↓, 𝑥(0)3 ↓ 𝑥(0∶1)0 ↓↓, 𝑥(0∶1)1 ↓↓, 𝑥(0∶1)2 ↓↓, 𝑥(0∶1)3 ↓↓ 𝑥(0∶3)0 , 𝑥(0∶3)1 , 𝑥(0∶3)2 , 𝑥(0∶3)3

𝑝1 𝑥(1)0 ↑, 𝑥(1)1 ↑, 𝑥(1)2 ↑, 𝑥(1)3 ↑ 𝑥(0∶1)0 ↓↓, 𝑥(0∶1)1 ↓↓, 𝑥(0∶1)2 ↓↓, 𝑥(0∶1)3 ↓↓ 𝑥(0∶3)0 , 𝑥(0∶3)1 , 𝑥(0∶3)2 , 𝑥(0∶3)3

𝑝2 𝑥(2)0 ↓, 𝑥(2)1 ↓, 𝑥(2)2 ↓, 𝑥(2)3 ↓ 𝑥(2∶3)0 ↑↑, 𝑥(2∶3)1 ↑↑, 𝑥(2∶3)2 ↑↑, 𝑥(2∶3)3 ↑↑ 𝑥(0∶3)0 , 𝑥(0∶3)1 , 𝑥(0∶3)2 , 𝑥(0∶3)3

𝑝3 𝑥(3)0 ↑, 𝑥(3)1 ↑, 𝑥(3)2 ↑, 𝑥(3)3 ↑ 𝑥(2∶3)0 ↑↑, 𝑥(2∶3)1 ↑↑, 𝑥(2∶3)2 ↑↑, 𝑥(2∶3)3 ↑↑ 𝑥(0∶3)0 , 𝑥(0∶3)1 , 𝑥(0∶3)2 , 𝑥(0∶3)3

The lower bound on the cost of an allreduce is, somewhat remarkably, almost the same as of a simple
reduction: since in a reduction not all processors are active at the same time, we assume that the extra
work can be spread out perfectly. This means that the lower bound on the latency and computation
stays the same. For the bandwidth we reason as follows: in order for the communication to be perfectly
parallelized, 𝑝−1

𝑝 𝑛 items have to arrive at, and leave each processor. Thus we have a total time of

⌈log2 𝑝⌉𝛼 + 2𝑝 − 1
𝑝 𝑛𝛽 + 𝑝 − 1

𝑝 𝑛𝛾 .

The allreduce is an important operation in iterative methods for linear systems; see for instance sec-
tion 5.5.9. There, the reduction is typically applied to a single scalar, meaning that latency is relatively
important.

6.1.4 Allgather

In a gather operation on 𝑛 elements, each processor has 𝑛/𝑝 elements, and one processor collects them
all, without combining them as in a reduction. The allgather computes the same gather, but leaves the
result on all processors. You will see two important applications of this in the dense matrix-vector product
(section 6.2.3.3), and the setup of the sparse matrix-vector product (section 6.5.6).

Again we assume that gathers with multiple targets are active simultaneously. Since every processor
originates a minimum spanning tree, we have log2 𝑝𝛼 latency; since each processor receives 𝑛/𝑝 elements
from 𝑝 − 1 processors, there is (𝑝 − 1) × (𝑛/𝑝)𝛽 bandwidth cost. The total cost for constructing a length 𝑛
vector by allgather is then

⌈log2 𝑝⌉𝛼 + 𝑝 − 1
𝑝 𝑛𝛽.
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We illustrate this:

𝑡 = 1 𝑡 = 2 𝑡 = 3
𝑝0 𝑥0 ↓ 𝑥0𝑥1 ↓ 𝑥0𝑥1𝑥2𝑥3
𝑝1 𝑥1 ↑ 𝑥0𝑥1 ↓ 𝑥0𝑥1𝑥2𝑥3
𝑝2 𝑥2 ↓ 𝑥2𝑥3 ↑ 𝑥0𝑥1𝑥2𝑥3
𝑝3 𝑥3 ↑ 𝑥2𝑥3 ↑ 𝑥0𝑥1𝑥2𝑥3

At time 𝑡 = 1, there is an exchange between neighbors 𝑝0, 𝑝1 and likewise 𝑝2, 𝑝3; at 𝑡 = 2 there is an
exchange over distance two between 𝑝0, 𝑝2 and likewise 𝑝1, 𝑝3.

6.1.5 Reduce-scatter

In a reduce-scatter operation, each processor has 𝑛 elements, and an 𝑛-way reduction is done on them.
Unlike in the reduce or allreduce, the result is then broken up, and distributed as in a scatter operation.

Formally, processor 𝑖 has an item 𝑥(𝑖)𝑖 , and it needs ∑𝑗 𝑥(𝑗)𝑖 . We could implement this by doing a size 𝑝
reduction, collecting the vector (∑𝑖 𝑥(𝑖)0 , ∑𝑖 𝑥(𝑖)1 , …) on one processor, and scattering the results. However
it is possible to combine these operations in a so-called bidirectional exchange algorithm:

𝑡 = 1 𝑡 = 2 𝑡 = 3
𝑝0 𝑥(0)0 , 𝑥(0)1 , 𝑥(0)2 ↓, 𝑥(0)3 ↓ 𝑥(0∶2∶2)0 , 𝑥(0∶2∶2)1 ↓ 𝑥(0∶3)0
𝑝1 𝑥(1)0 , 𝑥(1)1 , 𝑥(1)2 ↓, 𝑥(1)3 ↓ 𝑥(1∶3∶2)0 ↑, 𝑥(1∶3∶2)1 𝑥(0∶3)1
𝑝2 𝑥(2)0 ↑, 𝑥(2)1 ↑, 𝑥(2)2 , 𝑥(2)3 𝑥(0∶2∶2)2 , 𝑥(0∶2∶2)3 ↓ 𝑥(0∶3)2
𝑝3 𝑥(3)0 ↑, 𝑥(3)1 ↑, 𝑥(3)2 , 𝑥(3)3 𝑥(1∶3∶2)0 ↑, 𝑥(1∶3∶2)1 𝑥(0∶3)3

The reduce-scatter can be considered as a allgather run in reverse, with arithmetic added, so the cost is

⌈log2 𝑝⌉𝛼 + 𝑝 − 1
𝑝 𝑛(𝛽 + 𝛾).

6.2 Parallel dense matrix-vector product

In this section we will go into great detail into the performance, and in particular the scalability, of the
parallel dense matrix-vector product. First we will consider a simple case, and discuss the parallelism
aspects in some amount of detail.
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6.2.1 Implementing the block-row case

In designing a parallel version of an algorithm, one often proceeds by making a data decomposition of
the objects involved. In the case of a matrix-vector operations such as the product 𝑦 = 𝐴𝑥 , we have the
choice of starting with a vector decomposition, and exploring its ramifications on how the matrix can
be decomposed, or rather to start with the matrix, and deriving the vector decomposition from it. In this
case, it seems natural to start with decomposing the matrix rather than the vector, since it will be most
likely of larger computational significance. We now have two choices:

1. We make a one-dimensional decomposition of the matrix, splitting it in block rows or block
columns, and assigning each of these – or groups of them – to a processor.

2. Alternatively, we can make a two-dimensional decomposition, assigning to each processor one
or more general submatrices.

We start by considering the decomposition in block rows. Consider a processor 𝑝 and the set 𝐼𝑝 of indices
of rows that it owns1, and let 𝑖 ∈ 𝐼𝑝 be a row that is assigned to this processor. The elements in row 𝑖 are
used in the operation

𝑦𝑖 = ∑
𝑗

𝑎𝑖𝑗𝑥𝑗

We now reason:
• If processor 𝑝 has all 𝑥𝑗 values, the matrix-vector product can trivially be executed, and upon
completion, the processor has the correct values 𝑦𝑗 for 𝑗 ∈ 𝐼𝑝 .

• This means that every processor needs to have a copy of 𝑥 , which is wasteful. Also it raises the
question of data integrity: you need to make sure that each processor has the correct value of 𝑥 .

• In certain practical applications (for instance iterative methods, as you have seen before), the
output of the matrix-vector product is, directly or indirectly, the input for a next matrix-vector
operation. This is certainly the case for the power method which computes 𝑥, 𝐴𝑥, 𝐴2𝑥, …. Since
our operation started with each processor having the whole of 𝑥 , but ended with it owning only
the local part of 𝐴𝑥 , we have a mismatch.

• Maybe it is better to assume that each processor, at the start of the operation, has only the local
part of 𝑥 , that is, those 𝑥𝑖 where 𝑖 ∈ 𝐼𝑝 , so that the start state and end state of the algorithm are the
same. This means we have to change the algorithm to include some communication that allows
each processor to obtain those values 𝑥𝑖 where 𝑖 ∉ 𝐼𝑝 .

Exercise 6.1. Go through a similar reasoning for the case where the matrix is decomposed in
block columns. Describe the parallel algorithm in detail, like above, but without giving
pseudo code.

Let us now look at the communication in detail: wewill consider a fixed processor 𝑝 and consider the oper-
ations it performs and the communication that necessitates. According to the above analysis, in executing
the statement 𝑦𝑖 = ∑𝑗 𝑎𝑖𝑗𝑥𝑗 we have to be aware what processor the 𝑗 values ‘belong to’. To acknowledge
this, we write

𝑦𝑖 = ∑
𝑗∈𝐼𝑝

𝑎𝑖𝑗𝑥𝑗 + ∑
𝑗∉𝐼𝑝

𝑎𝑖𝑗𝑥𝑗 (6.1)

1. For ease of exposition we will let 𝐼𝑝 be a contiguous range of indices, but any general subset is allowed.
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Input: Processor number 𝑝; the elements 𝑥𝑖 with 𝑖 ∈ 𝐼𝑝 ; matrix elements 𝐴𝑖𝑗 with 𝑖 ∈ 𝐼𝑝 .
Output: The elements 𝑦𝑖 with 𝑖 ∈ 𝐼𝑝
for 𝑖 ∈ 𝐼𝑝 do

𝑠 ← 0;
for 𝑗 ∈ 𝐼𝑝 do

𝑠 ← 𝑠 + 𝑎𝑖𝑗𝑥𝑗
for 𝑗 ∉ 𝐼𝑝 do

send 𝑥𝑗 from the processor that owns it to the current one, then;

𝑠 ← 𝑠 + 𝑎𝑖𝑗𝑥𝑗
𝑦𝑖 ← 𝑠

Procedure Naive Parallel MVP(𝐴, 𝑥𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑙𝑜𝑐𝑎𝑙 , 𝑝)

Figure 6.1: A naïvely coded parallel matrix-vector product.

If 𝑗 ∈ 𝐼𝑝 , the instruction 𝑦𝑖 ← 𝑦𝑖 +𝑎𝑎𝑖𝑗𝑥𝑗 involves only quantities that are already local to the processor. Let
us therefore concentrate on the case 𝑗 ∉ 𝐼𝑝 . It would be nice if we could just write the statement

y(i) = y(i) + a(i,j)*x(j)

and some lower layer would automatically transfer x(j) fromwhatever processor it is stored on to a local
register. (The PGAS languages of section 2.6.5 aim to do this, but their efficiency is far from guaranteed.)
An implementation, based on this optimistic view of parallelism, is given in figure 6.1.

The immediate problem with such a ‘local’ approach is that too much communication will take place.

• If the matrix 𝐴 is dense, the element 𝑥𝑗 is necessary once for each row 𝑖 ∈ 𝐼𝑝 , and it will thus be
fetched once for every row 𝑖 ∈ 𝐼𝑝 .

• For each processor 𝑞 ≠ 𝑝, there will be (large) number of elements 𝑥𝑗 with 𝑗 ∈ 𝐼𝑞 that need to be
transferred from processor 𝑞 to 𝑝. Doing this in separate messages, rather than one bulk transfer,
is very wasteful.

With shared memory these issues are not much of a problem, but in the context of distributed memory it
is better to take a buffering approach.

Instead of communicating individual elements of 𝑥 , we use a local buffer 𝐵𝑝𝑞 for each processor 𝑞 ≠ 𝑝
where we collect the elements from 𝑞 that are needed to perform the product on 𝑝. (See figure 6.2 for an
illustration.) The parallel algorithm is given in figure 6.3.

In addition to preventing an element from being fetched more than once, this also combines many small
messages into one large message, which is usually more efficient; recall our discussion of bandwidth and
latency in section 2.7.8.

Exercise 6.2. Give pseudocode for the matrix-vector product using nonblocking operations
(section 2.6.3.6)
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Figure 6.2: The parallel matrix-vector product with a blockrow distribution.

Input: Processor number 𝑝; the elements 𝑥𝑖 with 𝑖 ∈ 𝐼𝑝 ; matrix elements 𝐴𝑖𝑗 with 𝑖 ∈ 𝐼𝑝 .
Output: The elements 𝑦𝑖 with 𝑖 ∈ 𝐼𝑝
for 𝑞 ≠ 𝑝 do

Send elements of 𝑥 from processor 𝑞 to 𝑝, receive in buffer 𝐵𝑝𝑞 .

𝑦𝑙𝑜𝑐𝑎𝑙 ← 𝐴𝑥𝑙𝑜𝑐𝑎𝑙
for 𝑞 ≠ 𝑝 do

𝑦𝑙𝑜𝑐𝑎𝑙 ← 𝑦𝑙𝑜𝑐𝑎𝑙 + 𝐴𝑝𝑞𝐵𝑞
Procedure Parallel MVP(𝐴, 𝑥𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑙𝑜𝑐𝑎𝑙 , 𝑝)

Figure 6.3: A buffered implementation of the parallel matrix-vector product.
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Above we said that having a copy of the whole of 𝑥 on each processor was wasteful in space. The implicit
argument here is that, in general, we do not want local storage to be function of the number of processors:
ideally it should be only a function of the local data. (This is related to weak scaling; section 2.2.5.)

You see that, because of communication considerations, we have actually decided that it is unavoidable, or
at least preferable, for each processor to store the whole input vector. Such trade-offs between space and
time efficiency are fairly common in parallel programming. For the dense matrix-vector product we can
actually defend this overhead, since the vector storage is of lower order than the matrix storage, so our
over-allocation is small by ratio. Below (section 6.5), we will see that for the sparse matrix-vector product
the overhead can be much less.

It is easy to see that the parallel dense matrix-vector product, as described above, has perfect speedup if
we are allowed to ignore the time for communication. In the next couple of sections you will see that the
block row implementation above is not optimal if we take communication into account. For scalability
we need a two-dimensional decomposition. We start with a discussion of collectives.

6.2.2 The block-column case

We can also distribute the matrix by block columns. If you have studied the block-row case, this is not
much different:

• We start out again with each process storing a distinct set of columns;
• and each process starts out storing the corresponding part of the input;
• after completion of the product operation, each process stores its section of the output.

Exercise 6.3. Sketch the algorithm in pseudo-code. Where does the communication now hap-
pen relative to the computation? What collective operation are you using? (Hint: each
process needs only part of the output, not the whole vector.)

6.2.3 Scalability of the dense matrix-vector product

In this section, we will give a full analysis of the parallel computation of 𝑦 ← 𝐴𝑥 , where 𝑥, 𝑦 ∈ ℝ𝑛 and
𝐴 ∈ ℝ𝑛×𝑛. Wewill assume that 𝑝 processes will be used, but wemake no assumptions on their connectivity.
We will see that the way the matrix is distributed makes a big difference for the scaling of the algorithm;
for the original research see [99, 170, 178], and see section 2.2.5 for the definitions of the various forms of
scaling.

6.2.3.1 Matrix-vector product, partitioning by rows

Partition

𝐴 →
⎛
⎜
⎜
⎝

𝐴0
𝐴1
⋮

𝐴𝑝−1

⎞
⎟
⎟
⎠

𝑥 →
⎛
⎜
⎜
⎝

𝑥0
𝑥1
⋮

𝑥𝑝−1

⎞
⎟
⎟
⎠
, and 𝑦 →

⎛
⎜
⎜
⎝

𝑦0
𝑦1
⋮

𝑦𝑝−1

⎞
⎟
⎟
⎠
,

where 𝐴𝑖 ∈ ℝ𝑚𝑖×𝑛 and 𝑥𝑖, 𝑦𝑖 ∈ ℝ𝑚𝑖 with ∑𝑝−1
𝑖=0 𝑚𝑖 = 𝑛 and 𝑚𝑖 ≈ 𝑛/𝑝. We will start by assuming that 𝐴𝑖, 𝑥𝑖,

and 𝑦𝑖 are originally assigned to 𝑃𝑖.
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The computation is characterized by the fact that each processor needs the whole vector 𝑥 , but owns only
an 𝑛/𝑝 fraction of it. Thus, we execute an allgather of 𝑥 . After this, the processor can execute the local
product 𝑦𝑖 ← 𝐴𝑖𝑥 ; no further communication is needed after that.

An algorithm with cost computation for 𝑦 = 𝐴𝑥 in parallel is then given by

Step Cost (lower bound)

Allgather 𝑥𝑖 so that 𝑥 is available on all nodes ⌈log2(𝑝)⌉𝛼 + 𝑝−1
𝑝 𝑛𝛽 ≈ log2(𝑝)𝛼 + 𝑛𝛽

Locally compute 𝑦𝑖 = 𝐴𝑖𝑥 ≈ 2 𝑛2
𝑝 𝛾

Cost analysis The total cost of the algorithm is given by, approximately,

𝑇𝑝(𝑛) = 𝑇1D-row𝑝 (𝑛) = 2𝑛
2
𝑝 𝛾 + log2(𝑝)𝛼 + 𝑛𝛽.⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Overhead

Since the sequential cost is 𝑇1(𝑛) = 2𝑛2𝛾 , the speedup is given by

𝑆1D-row𝑝 (𝑛) = 𝑇1(𝑛)
𝑇1D-row𝑝 (𝑛)

= 2𝑛2𝛾
2 𝑛2

𝑝 𝛾 + log2(𝑝)𝛼 + 𝑛𝛽
= 𝑝

1 + 𝑝 log2(𝑝)
2𝑛2

𝛼
𝛾 + 𝑝

2𝑛
𝛽
𝛾

and the parallel efficiency by

𝐸1D-row𝑝 (𝑛) = 𝑆1D-row𝑝 (𝑛)
𝑝 = 1

1 + 𝑝 log2(𝑝)
2𝑛2

𝛼
𝛾 + 𝑝

2𝑛
𝛽
𝛾
.

6.2.3.1.1 An optimist’s view Now, if one fixes 𝑝 and lets 𝑛 get large,

lim𝑛→∞ 𝐸𝑝(𝑛) = lim𝑛→∞[ 1
1 + 𝑝 log2(𝑝)

2𝑛2
𝛼
𝛾 + 𝑝

2𝑛
𝛽
𝛾
] = 1.

Thus, if one can make the problem large enough, eventually the parallel efficiency is nearly perfect. How-
ever, this assumes unlimited memory, so this analysis is not practical.

6.2.3.1.2 A pessimist’s view In a strong scalability analysis, one fixes 𝑛 and lets 𝑝 get large, to get

lim𝑝→∞ 𝐸𝑝(𝑛) = lim𝑝→∞[ 1
1 + 𝑝 log2(𝑝)

2𝑛2
𝛼
𝛾 + 𝑝

2𝑛
𝛽
𝛾
] ∼ 1

𝑝 ↓ 0.

Thus, eventually the parallel efficiency becomes nearly nonexistent.
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6.2.3.1.3 Arealist’s view In amore realistic viewwe increase the number of processorswith the amount
of data. This is called weak scalability, and it makes the amount of memory that is available to store the
problem scale linearly with 𝑝.
Let𝑀 equal the number of floating point numbers that can be stored in a single node’s memory. Then the
aggregate memory is given by 𝑀𝑝. Let 𝑛max(𝑝) equal the largest problem size that can be stored in the
aggregate memory of 𝑝 nodes. Then, if all memory can be used for the matrix,

(𝑛max(𝑝))2 = 𝑀𝑝 or 𝑛max(𝑝) = √𝑀𝑝.
The question now becomes what the parallel efficiency for the largest problem that can be stored on 𝑝
nodes:

𝐸1D-row𝑝 (𝑛max(𝑝)) = 1
1+ 𝑝 log2(𝑝)

2(𝑛max(𝑝))2
𝛼
𝛾 +

𝑝
2𝑛max(𝑝)

𝛽
𝛾

= 1
1+ log2(𝑝)

2𝑀
𝛼
𝛾 + √𝑝

2√𝑀
𝛽
𝛾
.

Now, if one analyzes what happens when the number of nodes becomes large, one finds that

lim𝑝→∞ 𝐸𝑝(𝑛max(𝑝)) = lim𝑝→∞[ 1
1 + log2(𝑝)

2𝑀
𝛼
𝛾 + √𝑝

2√𝑀
𝛽
𝛾
] ∼ 1

√𝑝
↓ 0.

Thus, this parallel algorithm for matrix-vector multiplication does not scale either.

If you take a close look at this expression for efficiency, you’ll see that the main problem is the 1/√𝑝 part
of the expression. This terms involves a factor 𝛽 , and if you follow the derivation backward you see that
it comes from the time to send data between the processors. Informally this can be described as saying
that the message size is too large to make the problem scalable. In fact, the message size is constant 𝑛,
regardless the number of processors, while for scalability it probably needs to go down.

Alternatively, a realist realizes that there is a limited amount of time, 𝑇max, to get a computation done.
Under the best of circumstances, that is, with zero communication overhead, the largest problem that we
can solve in time 𝑇max is given by

𝑇𝑝(𝑛max(𝑝)) = 2(𝑛max(𝑝))2
𝑝 𝛾 = 𝑇max.

Thus

(𝑛max(𝑝))2 = 𝑇max𝑝
2𝛾 or 𝑛max(𝑝) = √𝑇max√𝑝

√2𝛾 .

Then the parallel efficiency that is attained by the algorithm for the largest problem that can be solved in
time 𝑇max is given by

𝐸𝑝,𝑛max
= 1

1 + log2 𝑝
𝑇 𝛼 + √

𝑝
𝑇
𝛽
𝛾
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and the parallel efficiency as the number of nodes becomes large approaches

lim𝑝→∞ 𝐸𝑝 =
√

𝑇𝛾
𝑝𝛽 .

Again, efficiency cannot be maintained as the number of processors increases and the execution time is
capped.

We can also compute the iso-efficiency curve for this operation, that is, the relationship between 𝑛, 𝑝 for
which the efficiency stays constant (see section 2.2.5.1). If we simplify the efficiency above as 𝐸(𝑛, 𝑝) =
2𝛾
𝛽

𝑛
𝑝 , then 𝐸 ≡ 𝑐 is equivalent to 𝑛 = 𝑂(𝑝) and therefore

𝑀 = 𝑂 (𝑛
2
𝑝 ) = 𝑂(𝑝).

Thus, in order to maintain efficiency we need to increase the memory per processor pretty quickly. This
makes sense, since that downplays the importance of the communication.

6.2.3.2 Matrix-vector product, partitioning by columns

Partition

𝐴 → (𝐴0, 𝐴1, … , 𝐴𝑝−1) 𝑥 →
⎛
⎜
⎜
⎝

𝑥0
𝑥1
⋮

𝑥𝑝−1

⎞
⎟
⎟
⎠
, and 𝑦 →

⎛
⎜
⎜
⎝

𝑦0
𝑦1
⋮

𝑦𝑝−1

⎞
⎟
⎟
⎠
,

where 𝐴𝑗 ∈ ℝ𝑛×𝑛𝑗 and 𝑥𝑗 , 𝑦𝑗 ∈ ℝ𝑛𝑗 with ∑𝑝−1
𝑗=0 𝑛𝑗 = 𝑛 and 𝑛𝑗 ≈ 𝑛/𝑝.

Wewill start by assuming that𝐴𝑗 , 𝑥𝑗 , and 𝑦𝑗 are originally assigned to 𝑃𝑗 (but now𝐴𝑖 is a block of columns).
In this algorithm by columns, processor 𝑖 can compute the length 𝑛 vector 𝐴𝑖𝑥𝑖 without prior communi-
cation. These partial results then have to be added together

𝑦 ← ∑
𝑖

𝐴𝑖𝑥𝑖

in a reduce-scatter operation: each processor 𝑖 scatters a part (𝐴𝑖𝑥𝑖)𝑗 of its result to processor 𝑗. The receiv-
ing processors then perform a reduction, adding all these fragments:

𝑦𝑗 = ∑
𝑖
(𝐴𝑖𝑥𝑖)𝑗 .

The algorithm with costs is then given by:

Step Cost (lower bound)

Locally compute 𝑦 (𝑗) = 𝐴𝑗𝑥𝑗 ≈ 2 𝑛2
𝑝 𝛾

Reduce-scatter the 𝑦 (𝑗)s so that 𝑦𝑖 = ∑𝑝−1
𝑗=0 𝑦 (𝑗)𝑖 is on 𝑃𝑖 ⌈log2(𝑝)⌉𝛼 + 𝑝−1

𝑝 𝑛𝛽 + 𝑝−1
𝑝 𝑛𝛾

≈ log2(𝑝)𝛼 + 𝑛(𝛽 + 𝛾)
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6.2.3.2.1 Cost analysis The total cost of the algorithm is given by, approximately,

𝑇1D-col𝑝 (𝑛) = 2𝑛
2
𝑝 𝛾 + log2(𝑝)𝛼 + 𝑛(𝛽 + 𝛾).⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Overhead

Notice that this is identical to the cost 𝑇1D-row𝑝 (𝑛), except with 𝛽 replaced by (𝛽 + 𝛾). It is not hard to see
that the conclusions about scalability are the same.

6.2.3.3 Two-dimensional partitioning

Clearly, a one-dimensional partitioning, whether by rows or columns, is a badly scaling solution. The
choice left to us is to use a two-dimensional partitioning. Herewe order the processes in a two-dimensional
grid, whether that makes sense or not in a network sense, and give each process a submatrix that spans
less than a full row or column. We will only consider square matrices, but we allow for the process grid
not to be perfectly square.

𝐴 →
⎛
⎜
⎜
⎝

𝐴00 𝐴01 … 𝐴0,𝑐−1
𝐴10 𝐴11 … 𝐴1,𝑐−1
⋮ ⋮ ⋱ ⋮

𝐴𝑟−1,0 𝐴𝑟−1,0 … 𝐴𝑟−1,𝑐−1

⎞
⎟
⎟
⎠

𝑥 →
⎛
⎜
⎜
⎝

𝑥0
𝑥1
⋮

𝑥𝑐−1

⎞
⎟
⎟
⎠
, and 𝑦 →

⎛
⎜
⎜
⎝

𝑦0
𝑦1
⋮

𝑦𝑟−1

⎞
⎟
⎟
⎠
,

where 𝐴𝑖𝑗 ∈ ℝ𝑛𝑖×𝑛𝑗 and 𝑥𝑖, 𝑦𝑖 ∈ ℝ𝑛𝑖 with ∑𝑝−1
𝑖=0 𝑛𝑖 = 𝑁 and 𝑛𝑖 ≈ 𝑁/√𝑃 .

We will view the processes as an 𝑟 × 𝑐 mesh, with 𝑃 = 𝑟𝑐, and index them as 𝑝𝑖𝑗 , with 𝑖 = 0, … , 𝑟 − 1 and
𝑗 = 0, … , 𝑐 − 1. Figure 6.4, for a 12 × 12 matrix on a 3 × 4 processor grid, illustrates the assignment of data
to nodes, where the 𝑖, 𝑗 ‘cell’ shows the matrix and vector elements owned by 𝑝𝑖𝑗 .

𝑥0
𝑎00 𝑎01 𝑎02 𝑦0
𝑎10 𝑎11 𝑎12
𝑎20 𝑎21 𝑎22
𝑎30 𝑎31 𝑎32

𝑥3
𝑎03 𝑎04 𝑎05
𝑎13 𝑎14 𝑎15 𝑦1
𝑎23 𝑎24 𝑎25
𝑎33 𝑎34 𝑎35

𝑥6
𝑎06 𝑎07 𝑎08
𝑎16 𝑎17 𝑎18
𝑎26 𝑎27 𝑎28 𝑦2
𝑎37 𝑎37 𝑎38

𝑥9
𝑎09 𝑎0,10 𝑎0,11
𝑎19 𝑎1,10 𝑎1,11
𝑎29 𝑎2,10 𝑎2,11
𝑎39 𝑎3,10 𝑎3,11 𝑦3

𝑥1
𝑎40 𝑎41 𝑎42 𝑦4
𝑎50 𝑎51 𝑎52
𝑎60 𝑎61 𝑎62
𝑎70 𝑎71 𝑎72

𝑥4
𝑎43 𝑎44 𝑎45
𝑎53 𝑎54 𝑎55 𝑦5
𝑎63 𝑎64 𝑎65
𝑎73 𝑎74 𝑎75

𝑥7
𝑎46 𝑎47 𝑎48
𝑎56 𝑎57 𝑎58
𝑎66 𝑎67 𝑎68 𝑦6
𝑎77 𝑎77 𝑎78

𝑥10
𝑎49 𝑎4,10 𝑎4,11
𝑎59 𝑎5,10 𝑎5,11
𝑎69 𝑎6,10 𝑎6,11
𝑎79 𝑎7,10 𝑎7,11 𝑦7

𝑥2
𝑎80 𝑎81 𝑎82 𝑦8
𝑎90 𝑎91 𝑎92
𝑎10,0 𝑎10,1 𝑎10,2
𝑎11,0 𝑎11,1 𝑎11,2

𝑥5
𝑎83 𝑎84 𝑎85
𝑎93 𝑎94 𝑎95 𝑦9
𝑎10,3 𝑎10,4 𝑎10,5
𝑎11,3 𝑎11,4 𝑎11,5

𝑥8
𝑎86 𝑎87 𝑎88
𝑎96 𝑎97 𝑎98
𝑎10,6 𝑎10,7 𝑎10,8 𝑦10
𝑎11,7 𝑎11,7 𝑎11,8

𝑥11
𝑎89 𝑎8,10 𝑎8,11
𝑎99 𝑎9,10 𝑎9,11
𝑎10,9 𝑎10,10 𝑎10,11
𝑎11,9 𝑎11,10 𝑎11,11 𝑦11

Figure 6.4: Distribution of matrix and vector elements for a problem of size 12 on a 4 × 3 processor grid.
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In other words, 𝑝𝑖𝑗 owns the matrix block 𝐴𝑖𝑗 and parts of 𝑥 and 𝑦 . This makes possible the following
algorithm2:

• Since 𝑥𝑗 is distributed over the 𝑗th column, the algorithm starts by collecting 𝑥𝑗 on each processor
𝑝𝑖𝑗 by an allgather inside the processor columns.

• Each processor 𝑝𝑖𝑗 then computes 𝑦𝑖𝑗 = 𝐴𝑖𝑗𝑥𝑗 . This involves no further communication.
• The result 𝑦𝑖 is then collected by gathering together the pieces 𝑦𝑖𝑗 in each processor row to form 𝑦𝑖,
and this is then distributed over the processor row. These two operations are in fact combined
to form a reduce-scatter .

• If 𝑟 = 𝑐, we can transpose the 𝑦 data over the processors, so that it can function as the input for a
subsequent matrix-vector product. If, on the other hand, we are computing 𝐴𝑡𝐴𝑥 , then 𝑦 is now
correctly distributed for the 𝐴𝑡 product.

6.2.3.3.1 Algorithm The algorithm with cost analysis is

Step Cost (lower bound)

Allgather 𝑥𝑖’s within columns ⌈log2(𝑟)⌉𝛼 + 𝑟−1
𝑝 𝑛𝛽

≈ log2(𝑟)𝛼 + 𝑛
𝑐 𝛽

Perform local matrix-vector multiply ≈ 2 𝑛2
𝑝 𝛾

Reduce-scatter 𝑦𝑖’s within rows ⌈log2(𝑐)⌉𝛼 + 𝑐−1
𝑝 𝑛𝛽 + 𝑐−1

𝑝 𝑛𝛾
≈ log2(𝑐)𝛼 + 𝑛

𝑟 𝛽 + 𝑛
𝑟 𝛾

6.2.3.3.2 Cost analysis The total cost of the algorithm is given by, approximately,

𝑇 𝑟×𝑐𝑝 (𝑛) = 𝑇 𝑟×𝑐𝑝 (𝑛) = 2𝑛
2
𝑝 𝛾 + log2(𝑝)𝛼 + ( 𝑛

𝑐 + 𝑛
𝑟 ) 𝛽 + 𝑛

𝑟 𝛾 .⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Overhead

We will now make the simplification that 𝑟 = 𝑐 = √𝑝 so that

𝑇√𝑝×√𝑝𝑝 (𝑛) = 𝑇√𝑝×√𝑝𝑝 (𝑛) = 2𝑛
2
𝑝 𝛾 + log2(𝑝)𝛼 + 𝑛

√𝑝 (2𝛽 + 𝛾)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Overhead

Since the sequential cost is 𝑇1(𝑛) = 2𝑛2𝛾 , the speedup is given by

𝑆√𝑝×√𝑝𝑝 (𝑛) = 𝑇1(𝑛)
𝑇√𝑝×√𝑝𝑝 (𝑛)

= 2𝑛2𝛾
2 𝑛2

𝑝 𝛾 + 𝑛
√𝑝 (2𝛽 + 𝛾)

= 𝑝
1 + 𝑝 log2(𝑝)

2𝑛2
𝛼
𝛾 + √𝑝

2𝑛
(2𝛽+𝛾)

𝛾

2. This figure shows a partitioning of the matrix into contiguous blocks, and the vector distribution seem to be what is
necessary to work with this matrix distribution. You could also look at this story the other way: start with a distribution of input
and output vector, and then decide what that implies for the matrix distribution. For instance, if you distributed 𝑥 and 𝑦 the same
way, you would arrive at a different matrix distribution, but otherwise the product algorithm would be much the same; see [55].
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and the parallel efficiency by

𝐸√𝑝×√𝑝𝑝 (𝑛) = 1
1 + 𝑝 log2(𝑝)

2𝑛2
𝛼
𝛾 + √𝑝

2𝑛
(2𝛽+𝛾)

𝛾

We again ask the question what the parallel efficiency for the largest problem that can be stored on 𝑝
nodes is.

𝐸√𝑝×√𝑝𝑝 (𝑛max(𝑝)) = 1
1 + 𝑝 log2(𝑝)

2𝑛2
𝛼
𝛾 + √𝑝

2𝑛
(2𝛽+𝛾)

𝛾
= 1

1 + log2(𝑝)
2𝑀

𝛼
𝛾 + 1

2√𝑀
(2𝛽+𝛾)

𝛾
so that still

lim𝑝→∞ 𝐸√𝑝×√𝑝𝑝 (𝑛max(𝑝)) = lim𝑝→∞
1

1 + log2(𝑝)
2𝑀

𝛼
𝛾 + 1

2√𝑀
(2𝛽+𝛾)

𝛾
= 0.

However, log2 𝑝 grows very slowly with 𝑝 and is therefore considered to act much like a constant. In this

case 𝐸√𝑝×√𝑝𝑝 (𝑛max(𝑝)) decreases very slowly and the algorithm is considered to be scalable for practical
purposes.

Note that when 𝑟 = 𝑝 the 2D algorithm becomes the ”partitioned by rows” algorithm and when 𝑐 = 𝑝 it
becomes the ”partitioned by columns” algorithm. It is not hard to show that the 2D algorithm is scalable
in the sense of the above analysis as long as 𝑟/𝑐 is kept approximately constant.

Exercise 6.4. Compute the iso-efficiency curve for this operation.

6.3 LU factorization in parallel

The matrix-vector and matrix-product are easy to parallelize in one sense. The elements of the output can
all be computed independently and in any order, so we have many degrees of freedom in parallelizing
the algorithm. This does not hold for computing an LU factorization, or solving a linear system with the
factored matrix.

6.3.1 Solving a triangular system

The solution of a triangular system 𝑦 = 𝐿−1𝑥 (with 𝐿 is lower triangular) is a matrix-vector operation,
so it has its 𝑂(𝑁 2) complexity in common with the matrix-vector product. However, unlike the product
operation, this solution process contains a recurrence relation between the output elements:

𝑦𝑖 = ℓ−1𝑖𝑖 (𝑥𝑖 − ∑
𝑗<𝑖

ℓ𝑖𝑗𝑥𝑗).

This means that parallelization is not trivial. In the case of a sparse matrix special strategies may be
possible; see section 6.10. Here we will make a few remarks about general, dense case.
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for 𝑘 = 1, 𝑛 − 1:
for 𝑖 = 𝑘 + 1 to 𝑛:

𝑎𝑖𝑘 ← 𝑎𝑖𝑘/𝑎𝑘𝑘
for 𝑖 = 𝑘 + 1 to 𝑛:

for 𝑗 = 𝑘 + 1 to 𝑛:
𝑎𝑖𝑗 ← 𝑎𝑖𝑗 − 𝑎𝑖𝑘 ∗ 𝑎𝑘𝑗

Figure 6.5: LU factorization algorithm

Let us assume for simplicity that communication takes no time, and that all arithmetic operations take
the same unit time. First we consider the matrix distribution by rows, meaning that processor 𝑝 stores the
elements ℓ𝑝∗. With this we can implement the triangular solution as:

• Processor 1 solves 𝑦1 = ℓ−111 𝑥1 and sends its value to the next processor.
• In general, processor 𝑝 gets the values 𝑦1, … , 𝑦𝑝−1 from processor 𝑝 − 1, and computes 𝑦𝑝 ;
• Each processor 𝑝 then sends 𝑦1, … , 𝑦𝑝 to 𝑝 + 1.

Exercise 6.5. Show that this algorithm takes time 2𝑁 2, just like the sequential algorithm.

This algorithm has each processor passing all computed 𝑦𝑖 values to its successor, in a pipeline fashion.
However, this means that processor 𝑝 receives 𝑦1 only at the last moment, whereas that value was com-
puted already in the first step. We can formulate the solution algorithm in such a way that computed
elements are made available as soon as possible:

• Processor 1 solve 𝑦1, and sends it to all later processors.
• In general, processor 𝑝 waits for individual messages with values 𝑦𝑞 for 𝑞 < 𝑝.
• Processor 𝑝 then computes 𝑦𝑝 and sends it to processors 𝑞 with 𝑞 > 𝑝.

Under the assumption that communication time is negligible, this algorithm can be much faster. For in-
stance, all processors 𝑝 > 1 receive 𝑦1 simultaneously, and can compute ℓ𝑝1𝑦1 simultaneously.

Exercise 6.6. Show that this algorithm variant takes a time 𝑂(𝑁 ), if we ignore communication.
What is the cost if we incorporate communication in the cost?

Exercise 6.7. Now consider the matrix distribution by columns: processor 𝑝 stores ℓ∗𝑝 . Outline
the triangular solution algorithm with this distribution, and show that the parallel solve
time is 𝑂(𝑁 ).

6.3.2 Factorization, dense case

Analysis of Gaussian elimination, or LU factorization is a little tricky. First of all, Gaussian elimination can
be performed in right-looking, left-looking (Doolittle) and Crout variants; see section 5.3.1.1 and [183].
The choice of algorithm, while they all compute the same result, make have computational ramifications.

Let’s limit ourselves to the regular right-looking Gaussian elimination of section 5.3.1, reproduced in
figure 6.5.

The number of operations in this is

𝑛
∑
𝑘=1

(
𝑛
∑

𝑖=𝑘+1
1 +

𝑛
∑

𝑖=𝑘+1

𝑛
∑

𝑗=𝑘+1
1) = 𝑛3/3 + 𝑂(𝑛2).
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The exact calculation does not concern us here; by analogy to integrals you’ll see the justice in that factor
of 1/3 on the leading term. Also, we will ignore lower order terms throughout.

If you do a few steps of the algorithm by hand, you see that

𝑎22 ← 𝑎22 − 𝑎21 ∗ 𝑎−111 𝑎12
⋯
𝑎33 ← 𝑎33 − 𝑎32 ∗ 𝑎−122 𝑎23

meaning that there is a chain of dependent operations.
Exercise 6.8. Follow this argument through. Argue that there is a non-trivial critical path in

the sense of section 2.2.4. What is its length?
In the analysis of the critical path section, what does this critical path imply for the
minimum parallel execution time and bounds on speedup?

Now let’s take a closer look at howwe would actually parallelize this. The major work step is the subblock
update:
for 𝑖 = 𝑘 + 1 to 𝑛:

for 𝑗 = 𝑘 + 1 to 𝑛:
𝑎𝑖𝑗 ← 𝑎𝑖𝑗 − 𝑎𝑖𝑘 ∗ 𝑎𝑘𝑗

In the 𝑘 = 1 step, this involves (𝑛 − 1)2 operations, and these are all parallel, so you could theoretically
use (𝑛 − 1)2 processing elements (processors, cores, simd lines, etc.)
Exercise 6.9. Continue this reasoning. With 𝑝 = 𝑛2 processing elements each of the (𝑖, 𝑗)

updates in the subblock can be done simultaneously. To be precise, how long does an
arbitrary 𝑘 iteration take? Summing over all 𝑘, what is the resulting 𝑇𝑝 , 𝑆𝑝 , 𝐸𝑝? How
does this relate to the bounds you derived above?
Also, with 𝑝 = 𝑛 processing elements you could let each row or column of the subblock
update be done in parallel. What is now the time for the 𝑘th outer iteration? What is
the resulting 𝑇𝑝 , 𝑆𝑝 , 𝐸𝑝?,

So far we’ve looked at parallel execution aspects, but without worrying about memory. For a memory
analysis we establish the following relations for time and memory in terms of problem size 𝑁 and pro-
cessor frequency 𝑓 :

𝑇 = 1
3𝑁

3/𝑓 , 𝑀 = 𝑁 2.

Note that this formula holds for a single processor computer.
Exercise 6.10. Suppose you buy a processor twice as fast, and you want to do a benchmark

run that again takes time 𝑇 . How much memory do you need?
With 𝑝 parallel processing elements, the relations become

𝑇 = 1
3𝑁

3/(𝑝𝑓 ), 𝑀 = 𝑁 2.

Let’s now investigate the implications of an increase in the number of processors, where we assume that
each processor has its own memory, containing 𝑀𝑝 = 𝑁 2/𝑝 of the total problem. (Since keep the process
itself constant, we can set for simplicity 𝑓 = 1.)
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Exercise 6.11. Suppose you have a cluster with 𝑝 processors, each with 𝑀𝑝 memory, can run
a Gaussian elimination of an 𝑁 × 𝑁 matrix in time 𝑇 :

𝑇 = 1
3𝑁

3/𝑝, 𝑀𝑝 = 𝑁 2/𝑝.

Now you extend the cluster to 2𝑃 processors, of the same clock speed, and you want to
do a benchmark run, again taking time 𝑇 . How much memory does each node need?
Hint: for the extended cluster:

𝑇 ′ = 1
3𝑁

′3/𝑝′, 𝑀′𝑝 = 𝑁 ′2/𝑝′.

The question becomes to compute 𝑀′𝑝 under the given conditions.

6.3.3 Factorization, implementation of the dense case

A full analysis of the scalability of parallel dense LU factorization is quite involved, so we will state without
further proof that as in the matrix-vector case a two-dimensional distribution is needed.

Exercise 6.12. Analyze the running time, speedup, and efficiency as a function of 𝑁 , if we
assume a one-dimensional distribution, and enough processors to store one column per
processor. Show that speedup is limited.
Also perform this analysis for a two-dimensional decomposition where each processor
stores one element.

For this reason, an overdecomposition is used, where the matrix is divided in more blocks than there are
processors, and each processor stores several, non-contiguous, sub-matrices.We illustrate this in figure 6.6

Figure 6.6: One-dimensional cyclic distribution: assignment of four matrix columns to two processors,
and the resulting mapping of storage to matrix columns.

where we divide four block columns of a matrix to two processors: each processor stores in a contiguous
block of memory two non-contiguous matrix columns.
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Figure 6.7: Matrix-vector multiplication with a cyclicly distributed matrix.

Next, we illustrate in figure 6.7 that a matrix-vector product with such a matrix can be performed without
knowing that the processors store non-contiguous parts of the matrix. All that is needed is that the input
vector is also cyclicly distributed.

Exercise 6.13. Now consider a 4 × 4 matrix and a 2 × 2 processor grid. Distribute the matrix
cyclicly both by rows and columns. Show how the matrix-vector product can again
be performed using the contiguous matrix storage, as long as the input is distributed
correctly. How is the output distributed? Show that more communication is needed
than the reduction of the one-dimensional example.

Specifically, with 𝑃 < 𝑁 processors, and assuming for simplicity 𝑁 = 𝑐𝑃 , we let processor 0 store rows
0, 𝑐, 2𝑐, 3𝑐, …; processor 1 stores rows 1, 𝑐 + 1, 2𝑐 + 1, …, et cetera. This scheme can be generalized two a
two-dimensional distribution, if 𝑁 = 𝑐1𝑃1 = 𝑐2𝑃2 and 𝑃 = 𝑃1𝑃2. This is called a 2D cyclic distribution. This
scheme can be further extended by considering block rows and columns (with a small block size), and
assigning to processor 0 the block rows 0, 𝑐, 2𝑐, ….

Exercise 6.14. Consider a square 𝑛×𝑛matrix, and a square 𝑝×𝑝 processor grid, where 𝑝 divides 𝑛
without remainder. Consider the overdecomposition outlined above, and make a sketch
of matrix element assignment for the specific case 𝑛 = 6, 𝑝 = 2. That is, draw an 𝑛 × 𝑛
table where location (𝑖, 𝑗) contains the processor number that stores the corresponding
matrix element. Also make a table for each of the processors describing the local to
global mapping, that is, giving the global (𝑖, 𝑗) coordinates of the elements in the local
matrix. (You will find this task facilitated by using zero-based numbering.)
Now write functions 𝑃, 𝑄, 𝐼 , 𝐽 of 𝑖, 𝑗 that describe the global to local mapping, that is,
matrix element 𝑎𝑖𝑗 is stored in location (𝐼 (𝑖, 𝑗), 𝐽 (𝑖, 𝑗)) on processor (𝑃(𝑖, 𝑗), 𝑄(𝑖, 𝑗)).

6.3.4 Factorization, sparse case

Sparse matrix LU factorization in parallel is a notoriously difficult topic. Any type of factorization involves
a sequential component, making it non-trivial to begin with. To see the problem with the sparse case in
particular, suppose you process the matrix rows sequentially. The dense case has enough elements per
row to derive parallelism there, but in the sparse case that number may be very low.

The way out of this problem is to realize that we are not interested in the factorization as such, but rather
that we can use it to solve a linear system. Since permuting the matrix gives the same solution, maybe
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itself permuted, we can explore permutations that have a higher degree of parallelism.

The topic of matrix orderings already came up in section 5.4.3.5, motivated by fill-in reduction. We will
consider orderings with favorable parallelism properties below: nested dissection in section 6.8.1, and
multi-color orderings in section 6.8.2.

6.4 Matrix-matrix product
In this section we consider both the sequential and parallel matrix-matrix product, both of which offer
some computational challenges.

The matrix-matrix product 𝐶 ← 𝐴 ⋅ 𝐵 (or 𝐶 ← 𝐴 ⋅ 𝐵 + 𝛾𝐶 , as it is used in the BLAS) has a simple parallel
structure. Assuming all square matrices of size 𝑁 × 𝑁

• the 𝑁 3 products 𝑎𝑖𝑘𝑏𝑘𝑗 can be computed independently, after which
• the 𝑁 2 elements 𝑐𝑖𝑗 are formed by independent sum reductions, each of which take a time log2 𝑁 .

However, considerably more interesting are the questions of data movement:

• With 𝑁 3 operations on 𝑂(𝑁 2) elements, there is considerable opportunity for data reuse (sec-
tion 1.7.1). We will explore the ‘Goto algorithm’ in section 6.4.1.

• Depending on the way the matrices are traversed, TLB reuse also needs to be considered (sec-
tion 1.4.4.2).

• The distributed memory version of the matrix-matrix product is especially tricky. Assuming
𝐴, 𝐵, 𝐶 are all distributed over a processor grid, elements of 𝐴 have to travel through a processor
row, and elements of 𝐵 through a processor columns. We discuss ‘Cannon’s algorithm’ and the
outer-product method below.

6.4.1 Goto matrix-matrix product

In section 1.7.1 we argued that the matrix matrix product (or dgemm in BLAS terms) has a large amount of
possible data reuse: there are 𝑂(𝑛3) operations on 𝑂(𝑛2) data. We will now consider an implementation,
due to Kazushige Goto [82], that indeed achieves close to peak performance.

The matrix-matrix algorithm has three loops, each of which we can block, giving a six-way nested loop.
Since there are no recurrences on the output elements, all resulting loop exchanges are legal. Combine
this with the fact that the loop blocking introduces three blocking parameters, and you’ll see that the
number of potential implementations is enormous. Here we present the global reasoning that underlies
the Goto implementation; for a detailed discussion see the paper cited.

We start by writing the product 𝐶 ← 𝐴 ⋅ 𝐵 (or 𝐶 ← 𝐶 + 𝐴𝐵 according to the Blas standard) as a sequence
of low-rank updates:

𝐶∗∗ = ∑
𝑘

𝐴∗𝑘𝐵𝑘∗

See figure 6.8. Next we derive the ‘block-panel’ multiplication by multiplying a block of 𝐴 by a ‘sliver’
of 𝐵; see figure 6.9. Finally, the inner algorithm accumulates a small row 𝐶𝑖,∗, typically of small size such
as 4, by accumulating:
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Figure 6.8: Matrix-matrix multiplication as a sequence of low-rank updates.

Figure 6.9: The block-panel multiplication in the matrix-matrix algorithm

// compute C[i,*] :
for k:

C[i,*] = A[i,k] * B[k,*]

See figure 6.10. Now this algorithm is tuned.

Figure 6.10: The register-resident kernel of the matrix-matrix multiply

• We need enough registers for C[i,*], A[i,k] and B[k,*]. On current processors that means
that we accumulate four elements of 𝐶 .

• Those elements of 𝐶 are accumulated, so they stay in register and the only data transfer is loading
of the elements of 𝐴 and 𝐵; there are no stores!

• The elements A[i,k] and B[k,*] stream from L1.
• Since the same block of 𝐴 is used for many successive slivers of 𝐵, we want it to stay resident;
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we choose the blocksize of 𝐴 to let it stay in L2 cache.
• In order to prevent TLB problems, 𝐴 is stored by rows. If we start out with a matrix in (Fortran)

column-major storage, this means we have to make a copy. Since copying is of a lower order of
complexity, this cost is amortizable.

This algorithm be implemented in specialized hardware, as in the Google TPU [81], giving great energy
efficiency.

6.4.2 Cannon’s algorithm for the distributed memory matrix-matrix product

Figure 6.11: Cannon’s algorithm for matrix-matrix multiplication:
(a) initial rotation of matrix rows and columns, (b) resulting po-
sition in which processor (𝑖, 𝑗) can start accumulating ∑𝑘 𝐴𝑖𝑘𝐵𝑘𝑗 ,
(c) subsequent rotation of 𝐴, 𝐵 for the next term.

In section 6.4.1 we considered the
high performance implementation of
the single-processor matrix-matrix
product. We will now briefly consider
the distributed memory version of
this operation. (It is maybe interesting
to note that this is not a generaliza-
tion based on the matrix-vector prod-
uct algorithm of section 6.2.)

One algorithm for this operation is
known as Cannon’s algorithm. It as-
sumes a square processor grid where
processor (𝑖, 𝑗) gradually accumulates
the (𝑖, 𝑗) block 𝐶𝑖,𝑗 = ∑𝑘 𝐴𝑖,𝑘𝐵𝑘,𝑗 ;
see figure 6.11. (This is intrinsically
a block matrix operation in the sense
of section 5.3.6. Because of the dis-
tributed nature of the implementa-
tion, here we actually store blocks,
rather than considering them only
conceptually.)

If you start top-left, you see that pro-
cessor (0, 0) has both 𝐴00 and 𝐵00, so
it can immediately start doing a lo-
cal multiplication. Processor (0, 1) has
𝐴01 and 𝐵01, which are not needed to-
gether, but if we rotate the second col-
umn of 𝐵 up by one position, proces-
sor (0, 1) will have 𝐴01, 𝐵11 and those
two do need to be multiplied. Simi-
larly, we rotate the third column of 𝐵
up by two places so that (0, 2) con-
tains 𝐴02, 𝐵22.
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How does this story go in the second
row? Processor (1, 0) has 𝐴10, 𝐵10 which are not needed together. If we rotate the second row of 𝐴 one
position to the left, it contains 𝐴11, 𝐵10 which are needed for a partial product. And now processor (1, 1)
has 𝐴11, 𝐵11.
If we continue this story, we start with a matrix 𝐴 of which the rows have been rotated left, and 𝐵 of
which the columns have been rotated up. In this setup, processor (𝑖, 𝑗) contains 𝐴𝑖,𝑖+𝑗 and 𝐵𝑖+𝑗,𝑗 , where
the addition is done modulo the matrix size. This means that each processor can start by doing a local
product.

Now we observe that 𝐶𝑖𝑗 = ∑𝑘 𝐴𝑖𝑘𝐵𝑘𝑗 implies that the next partial product term comes from increasing 𝑘
by 1. The corresponding elements of 𝐴, 𝐵 can be moved into the processor by rotating the rows and
columns by another location.

6.4.3 The outer-product method for the distributed matrix-matrix product

Cannon’s algorithm suffered from the requirement of needing a square processors grid. The outer-product
method is more general. It is based the following arrangement of the matrix-matrix product calculation:

for ( k )
for ( i )
for ( j )

c[i,j] += a[i,k] * b[k,j]

That is, for each 𝑘 we take a column of 𝐴 and a row of 𝐵, and computing the rank-1 matrix (or ‘outer
product’) 𝐴∗,𝑘 ⋅ 𝐵𝑘,∗. We then sum over 𝑘.
Looking at the structure of this algorithm, we notice that in step 𝑘, each column 𝑗 receives 𝐴∗,𝑘 , and each
row 𝑖 receives 𝐵𝑘,∗. In other words, elements of 𝐴∗,𝑘 are broadcast through their row, and elements of 𝐵𝑘,∗
are broadcast through their row.

Using the MPI library, these simultaneous broadcasts are realized by having a subcommunicator for each
row and each column.

6.5 Sparse matrix-vector product
In linear system solving through iterative methods (see section 5.5) the matrix-vector product is com-
putationally an important kernel, since it is executed in each of potentially hundreds of iterations. In
this section we look at performance aspects of the matrix-vector product on a single processor first; the
multi-processor case will get our attention in section 6.5.3.

6.5.1 The single-processor sparse matrix-vector product

We are not much worried about the dense matrix-vector product in the context of iterative methods, since
one typically does not iterate on dense matrices. In the case that we are dealing with block matrices, refer
to section 1.8.13 for an analysis of the dense product. The sparse product is a lot trickier, since most of
that analysis does not apply.
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Data reuse in the sparsematrix-vector product There are some similarities between the densematrix-
vector product, executed by rows, and the CRS sparse product (section 5.4.1.4). In both cases all matrix
elements are used sequentially, so any cache line loaded is utilized fully. However, the CRS product is
worse at least the following ways:

• The indirect addressing requires loading the elements of an integer vector. This implies that the
sparse product has more memory traffic for the same number of operations.

• The elements of the source vector are not loaded sequentially, in fact they can be loaded in
effectively a random order. This means that a cacheline contains a source element will likely not
be fully utilized. Also, the prefetch logic of the memory subsystem (section 1.4.1) cannot assist
here.

For these reasons, an application that is computationally dominated by the sparse matrix-vector product
can very well be run at ≈ 5% of the peak performance of the processor.

It may be possible to improve this performance if the structure of the matrix is regular in some sense. One
such case is where we are dealing with a block matrix consisting completely of small dense blocks. This
leads at least to a reduction in the amount of indexing information: if the matrix consists of 2 × 2 blocks
we get a 4× reduction in the amount of integer data transferred.

Exercise 6.15. Give twomore reasons why this strategy is likely to improve performance. Hint:
cachelines, and reuse.

Such amatrix tessellationmay give a factor of 2 in performance improvement. Assuming such an improve-
ment, we may adopt this strategy even if the matrix is not a perfect block matrix: if every 2 × 2 block will
contain one zero element we may still get a factor of 1.5 performance improvement [188, 27].

Vectorization in the sparse product In other circumstances bandwidth and reuse are not the dominant
concerns:

• On old vector computers, such as old Cray machines, memory was fast enough for the processor,
but vectorization was paramount. This is a problem for sparse matrices, since the number of
zeros in a matrix row, and therefore the vector length, is typically low.

• On GPUs memory bandwidth is fairly high, but it is necessary to find large numbers of identical
operations. Matrix can be treated independently, but since the rows are likely of unequal length
this is not an appropriate source of parallelism.

For these reasons, a variation on the diagonal storage scheme for sparse matrices has seen a revival re-
cently; see section 5.4.1.5. The observation here is that if you sort the matrix rows by the number of rows
you get a small number of blocks of rows; each block will be fairly large, and in each block the rows have
the same number of elements.

A matrix with such a structure is good for vector architectures [39]. In this case the product is computed
by diagonals.

Exercise 6.16. Write pseudo-code for this case. How did the sorting of the rows improve the
situation?

This sorted storage scheme also solves the problem we noted on GPUs [20]. In this case we the traditional
CRS product algorithm, and we have an amount of parallelism equal to the number of rows in a block.
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Of course there is the complication that we have permuted the matrix: the input and output vectors
will need to be permuted accordingly. If the product operation is part of an iterative method, doing this
permutation back and forth in each iteration will probably negate any performance gain. Instead we could
permute the whole linear system and iterate on the permuted system.

Exercise 6.17. Can you think of reasons why this would work? Reasons why it wouldn’t?

6.5.2 The parallel sparse matrix-vector product

In section 5.4 you saw a first discussion of sparse matrices, limited to use on a single processor. We will
now go into parallelism aspects.

The dense matrix-vector product, as you saw above, required each processor to communicate with every
other, and to have a local buffer of essentially the size of the global vector. In the sparse case, considerably
less buffer space, as well as less communication, is needed. Let us analyze this case. We will assume that
the matrix is distributed by block rows, where processor 𝑝 owns the matrix rows with indices in some
set 𝐼𝑝 .
The line 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗 , which in the dense case is executed for all 𝑗, and therefore induces an allgather,
now has to take into account that 𝑎𝑖𝑗 can be zero, so for some pairs 𝑖 ∈ 𝐼𝑝 , 𝑗 ∉ 𝐼𝑝 no communication will be
needed. Declaring for each 𝑖 ∈ 𝐼𝑝 a sparsity pattern set

𝑆𝑝;𝑖 = {𝑗 ∶ 𝑗 ∉ 𝐼𝑝 , 𝑎𝑖𝑗 ≠ 0}
our multiplication instruction becomes

𝑦𝑖 + = 𝑎𝑖𝑗𝑥𝑗 if 𝑗 ∈ 𝑆𝑝;𝑖.
If we want to avoid, as above, a flood of small messages, we combine all communication into a single
message per processor. Defining

𝑆𝑝 = ∪𝑖∈𝐼𝑝𝑆𝑝;𝑖,
the algorithm now becomes:

• Collect all necessary off-processor elements 𝑥𝑗 with 𝑗 ∈ 𝑆𝑝 into one buffer;
• Perform the matrix-vector product, reading all elements of 𝑥 from local storage.

This whole analysis of course also applies to dense matrices. This becomes different if we consider where
sparse matrices come from. Let us start with a simple case.

Recall figure 4.1, which illustrated a discretized boundary value problem on the simplest domain, a square,
and let us now parallelize it. We do this by partitioning the domain; each processor gets the matrix rows
corresponding to its subdomain. Figure 6.12 shows how this gives rise to connections between processors:
the elements 𝑎𝑖𝑗 with 𝑖 ∈ 𝐼𝑝 , 𝑗 ∉ 𝐼𝑝 are now the ‘legs’ of the stencil that reach beyond a processor boundary.
The set of all such 𝑗, formally defined as

𝐺 = {𝑗 ∉ 𝐼𝑝 ∶ ∃𝑖∈𝐼𝑝 ∶ 𝑎𝑖𝑗 ≠ 0}
is known as the ghost region of a processor; see figure 6.13.
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Figure 6.12: A difference stencil applied to a two-dimensional square domain, distributed over processors.
A cross-processor connection is indicated..

Figure 6.13: The ghost region of a processor, induced by a stencil.
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Exercise 6.18. Show that a one-dimensional partitioning of the domain leads to a partitioning
of the matrix into block rows, but a two-dimensional partitioning of the domain does
not. You can do this in the abstract, or you can illustrate it: take a 4 × 4 domain (giving
a matrix of size 16), and partition it over 4 processors. The one-dimensional domain
partitioning corresponds to giving each processor one line out of the domain, while the
two-dimensional partitioning gives each processor a 2×2 subdomain. Draw the matrices
for these two cases.

Figure 6.14: Band matrix with halfbandwidth √𝑁 .

Exercise 6.19. Figure 6.14 depicts a sparse matrix of size 𝑁 with a halfbandwidth 𝑛 = √𝑁 .
That is,

|𝑖 − 𝑗| > 𝑛 ⇒ 𝑎𝑖𝑗 = 0.
We make a one-dimensional distribution of this matrix over 𝑝 processors, where 𝑝 =
𝑛 = √𝑁 .
Show that the matrix-vector product using this scheme is weakly scalable by computing
the efficiency as function of the number of processors

𝐸𝑝 = 𝑇1
𝑝𝑇𝑝

.

Why is this scheme not really weak scaling, as it is commonly defined?

One crucial observation about the parallel sparse matrix-vector product is that, for each processor, the
number of other processors it is involved with is strictly limited. This has implications for the efficiency
of the operation.

In the case of the dense matrix-vector product (section 6.2.3), partitioning the matrix over the processors
by (block) rows did not lead to a scalable algorithm. Part of the reason was the increase in the number
of neighbors that each processors needs to communicate with. Figure 6.12 shows that, for the matrix of a
5-five point stencil, this number is limited to four.

304 Introduction to High Performance Scientific Computing



6.5. Sparse matrix-vector product

Exercise 6.20. Take a square domain and a partitioning of the variables of the processors as in
figure 6.12. What is the maximum number of neighbors a processor needs to commu-
nication with for the box stencil in figure 4.3? In three space dimensions, what is the
number of neighbors if a 7-point central difference stencil is used?

The observation that each processor communicates with just a few neighbors stays intact if we go beyond
square domains to more complicated physical objects. If a processor receives a more or less contiguous
subdomain, the number of its neighbors will be limited. This implies that even in complicated problems
each processor will only communicate with a small number of other processors. Compare this to the dense
case where each processor had to receive data from every other processor. It is obvious that the sparse
case is far more friendly to the interconnection network. (The fact that it also more common for large
systems may influence the choice of network to install if you are about to buy a new parallel computer.)

6.5.3 Parallel efficiency of the sparse matrix-vector product

For square domains we can make the above argument formal. Let the unit domain [0, 1]2 be partitioned
over 𝑃 processors in a √𝑃 × √𝑃 grid. From figure 6.12 we see that every processor communicates with at
most four neighbors. Let the amount of work per processor be 𝑤 and the communication time with each
neighbor 𝑐. Then the time to perform the total work on a single processor is 𝑇1 = 𝑃𝑤 , and the parallel
time is 𝑇𝑃 = 𝑤 + 4𝑐, giving a speed up of

𝑆𝑃 = 𝑃𝑤/(𝑤 + 4𝑐) = 𝑃/(1 + 4𝑐/𝑤) ≈ 𝑃(1 − 4𝑐/𝑤).
Exercise 6.21. Express 𝑐 and 𝑤 as functions of 𝑁 and 𝑃 , and show that the speedup is asymp-

totically optimal, under weak scaling of the problem.
Exercise 6.22. In this exercise you will analyze the parallel sparse matrix-vector product for a

hypothetical, but realistic, parallel machine. Let the machine parameters be character-
ized by (see section 1.3.2):

• Network Latency: 𝛼 = 1𝜇𝑠 = 10−6𝑠.
• Network Bandwidth: 1𝐺𝑏/𝑠 corresponds to 𝛽 = 10−9.
• Computation rate: A per-core flops rate of 1𝐺flops means 𝛾 = 10−9. This number
may seem low, but note that the matrix-vector product has less reuse than the
matrix-matrix product, which can achieve close to peak performance, and that the
sparse matrix-vector product is even more bandwidth-bound.

We perform a combination of asymptotic analysis and deriving specific numbers. We
assume a cluster of 104 single-core processors3. We apply this to a five-point stencil
matrix of size 𝑁 = 25 ⋅ 1010. This means each processor stores 5 ⋅ 8 ⋅ 𝑁/𝑝 = 109 bytes. If
the matrix comes from a problem on a square domain, this means the domain was size
𝑛 × 𝑛 where 𝑛 = √𝑁 = 5 ⋅ 105.
Case 1. Rather than dividing the matrix, we divide the domain, and we do this first by
horizontal slabs of size 𝑛 × (𝑛/𝑝). Argue that the communication complexity is 2(𝛼 +
𝑛𝛽) and computation complexity is 10 ⋅ 𝑛 ⋅ (𝑛/𝑝). Show that the resulting computation
outweighs the communication by a factor 250.

3. Introducing multicore processors would complicate the story, but since the number of cores is 𝑂(1), and the only way to
grow a cluster is by adding more networked nodes, it does not change the asymptotic analysis.
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Case 2. We divide the domain into patches of size (𝑛/√𝑝) × (𝑛/√𝑝). The memory and
computation time are the same as before. Derive the communication time and show that
it is better by a factor of 50.
Argue that the first case does not weakly scale: under the assumption that 𝑁/𝑝 is con-
stant the efficiencywill go down. (Show that speedup still goes up asymptotically as √𝑝.)
Argue that the second case does scale weakly.

The argument that a processor will only connect with a few neighbors is based on the nature of the
scientific computations. It is true for FDM and FEM methods. In the case of the Boundary Element Method
(BEM), any subdomain needs to communicate with everything in a radius 𝑟 around it. As the number of
processors goes up, the number of neighbors per processor will also go up.

Exercise 6.23. Give a formal analysis of the speedup and efficiency of the BEM algorithm. As-
sume again a unit amount of work 𝑤 per processor and a time of communication 𝑐 per
neighbor. Since the notion of neighbor is now based on physical distance, not on graph
properties, the number of neighbors will go up. Give 𝑇1, 𝑇𝑝 , 𝑆𝑝 , 𝐸𝑝 for this case.

There are also cases where a sparse matrix needs to be handled similarly to a dense matrix. For instance,
Google’s PageRank algorithm (see section 9.4) has at its heart the repeated operation 𝑥 ← 𝐴𝑥 where 𝐴 is a
sparse matrix with𝐴𝑖𝑗 ≠ 0 if web page 𝑗 links to page 𝑖; see section 9.4. This makes𝐴 a very sparse matrix,
with no obvious structure, so every processor will most likely communicate with almost every other.

6.5.4 Memory behavior of the sparse matrix-vector product

In section 1.8.13 you saw an analysis of the sparse matrix-vector product in the dense case, on a single
processor. Some of the analysis carries over immediately to the sparse case, such as the fact that each
matrix element is used only once and that the performance is bound by the bandwidth between processor
and memory.

Regarding reuse of the input and the output vector, if the matrix is stored by rows, such as in CRS format
(section 5.4.1.3), access to the output vector will be limited to one write per matrix row. On the other hand,
the loop unrolling trick for getting reuse of the input vector can not be applied here. Code that combines
two iterations is as follows:

for (i=0; i<M; i+=2) {
s1 = s2 = 0;
for (j) {
s1 = s1 + a[i][j] * x[j];
s2 = s2 + a[i+1][j] * x[j];

}
y[i] = s1; y[i+1] = s2;

}

The problem here is that if 𝑎𝑖𝑗 is nonzero, it is not guaranteed that 𝑎𝑖+1,𝑗 is nonzero. The irregularity of the
sparsity pattern makes optimizing the matrix-vector product hard. Modest improvements are possible by
identifying parts of the matrix that are small dense blocks [27, 44, 187].
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On a GPU the sparse matrix-vector product is also limited by memory bandwidth. Programming is now
harder because the GPU has to work in data parallel mode, with many active threads.

An interesting optimization becomes possible if we consider the context in which the sparse matrix-vector
product typically appears. The most common use of this operation is in iterative solution methods for
linear systems (section 5.5), where it is applied with the same matrix in possibly hundreds of iterations.
Thus we could consider leaving the matrix stored on the GPU and only copying the input and output
vectors for each product operation.

6.5.5 The transpose product

In section 5.4.1.3 you saw that the code for both the regular and the transpose matrix-vector product are
limited to loop orderings where rows of the matrix are traversed. (In section 1.7.2 you saw a discussion of
computational effects of changes in loop order; in this case we are limited to row traversal by the storage
format.)

In this sectionwewill briefly look at the parallel transpose product. Equivalently to partitioning thematrix
by rows and performing the transpose product, we look at a matrix stored and partitioned by columns
and perform the regular product.

The algorithm for the product by columns can be given as:

𝑦 ← 0
for 𝑗:

for 𝑖:
𝑦𝑖 ← 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗

Both in shared and distributed memory we distribute outer iterations over processors. The problem is
then that each outer iteration updates the whole output vector. This is a problem: with shared memory it
leads to multiple writes to locations in the output and in distributed memory it requires communication
that is as yet unclear.

One way to solve this would be to allocate a private output vector 𝑦 (𝑝) for each process:

𝑦 (𝑝) ← 0
for 𝑗 ∈ the rows of processor 𝑝

for all 𝑖:
𝑦 (𝑝)𝑖 ← 𝑦 (𝑝)𝑖 + 𝑎𝑗𝑖𝑥𝑗

after which we sum 𝑦 ← ∑𝑝 𝑦 (𝑝).

6.5.6 Setup of the sparse matrix-vector product

Above we defined sets of processes 𝑆𝑝 that contain data to be sent to process 𝑝. It is easy enough for
process 𝑝 to construct this set from its part of the sparse matrix.

Exercise 6.24. Assume that the matrix is divided over the processors by block rows; see fig-
ure 6.2 for an illustration. Also assume that each processor knows which rows each
other processor stores. (How would you implement that knowledge?)
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Sketch the algorithm by which a processor can find out who it will be receiving from;
this algorithm should not involve any communication itself.

However, there is an asymmetry between sending and receiving. While it is fairly easy for a processor to
find out what other processors it will be receiving from, discovering who to send to is harder.
Exercise 6.25. Argue that this is easy in the case of a structurally symmetric matrix: 𝑎𝑖𝑗 ≠ 0 ⇔

𝑎𝑗𝑖 ≠ 0.
In the general case, a processor can in principle be asked to send to any other, so the simple algorithm is
as follows:

• Each processor makes an inventory of what non-local indices it needs. Under the above assump-
tion that it knows what range of indices each other processor owns, it then decides which indices
to get from what neighbors.

• Each processor sends a list of indices to each of its neighbors; this list will be empty for most of
the neighbors, but we can not omit sending it.

• Each processor then receives these lists from all others, and draws up lists of which indices to
send.

You will note that, even though the communication during the matrix-vector product involves only a few
neighbors for each processor, giving a cost that is 𝑂(1) in the number of processors, the setup involves
all-to-all communications, which have time complexity 𝑂(𝛼𝑃)
If a processor has only a few neighbors, the above algorithm is wasteful. Ideally, you would want space
and running time proportional to the number of neighbors. We could bring the receive time in the setup
if we knew how many messages were to be expected. That number can be found:

• Each processor makes an array need of length 𝑃 , where need[i] is 1 if the processor needs any
data from processor 𝑖, and zero otherwise.

• A reduce-scatter collective on this array, with a sum operator, then leaves on each processor a
number indicating how many processors need data from it.

• The processor can execute that many receive calls.
The reduce-scatter call has time complexity 𝛼 log 𝑃 + 𝛽𝑃 , which is of the same order as the previous
algorithm, but probably with a lower proportionality constant.

The time and space needed for the setup can be reduced to 𝑂(log 𝑃) with some sophisticated trickery [61,
107].

6.6 Computational aspects of iterative methods
All iterative methods feature the following operations:

• A matrix-vector product; this was discussed for the sequential case in section 5.4 and for the
parallel case in section 6.5. In the parallel case, construction of FEM matrices has a complication
that we will discuss in section 6.6.2.

• The construction of the preconditioner matrix 𝐾 ≈ 𝐴, and the solution of systems 𝐾𝑥 = 𝑦 .
This was discussed in the sequential case in section 5.5.6. We will go into parallelism aspects in
section 6.7.

• Some vector operations (including inner products, in general). These will be discussed next.
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6.6.1 Vector operations

There are two types of vector operations in a typical iterativemethod: vector additions and inner products.

Exercise 6.26. Consider the CG method of section 5.5.11, figure 5.11, applied to the matrix
from a 2D BVP; equation (4.56), First consider the unpreconditioned case 𝑀 = 𝐼 . Show
that there is a roughly equal number of floating point operations are performed in the
matrix-vector product and in the vector operations. Express everything in the matrix
size 𝑁 and ignore lower order terms. How would this balance be if the matrix had 20
nonzeros per row?
Next, investigate this balance between vector andmatrix operations for the FOM scheme
in section 5.5.9. Since the number of vector operations depends on the iteration, consider
the first 50 iterations and count how many floating point operations are done in the
vector updates and inner product versus thematrix-vector product. Howmany nonzeros
does the matrix need to have for these quantities to be equal?

Exercise 6.27. Flop counting is not the whole truth. What can you say about the efficiency of
the vector and matrix operations in an iterative method, executed on a single processor?

6.6.1.1 Vector additions

The vector additions are typically of the form 𝑥 ← 𝑥 + 𝛼𝑦 or 𝑥 ← 𝛼𝑥 + 𝑦 . If we assume that all vectors
are distributed the same way, this operation is fully parallel.

6.6.1.2 Inner products

Inner products are vector operations, but they are computationally more interesting than updates, since
they involve communication.

When we compute an inner product, most likely every processor needs to receive the computed value.
We use the following algorithm:

for processor 𝑝 do
compute 𝑎𝑝 ← 𝑥 𝑡𝑝𝑦𝑝 where 𝑥𝑝 , 𝑦𝑝 are the part of 𝑥, 𝑦 stored on processor 𝑝

do a global all-reduction to compute 𝑎 = ∑𝑝 𝑎𝑝
broadcast the result

Algorithm 1: Compute 𝑎 ← 𝑥 𝑡𝑦 where 𝑥, 𝑦 are distributed vectors.

The Allreduce) combines data over all processors, so they have a communication time that increases
with the number of processors. This makes the inner product potentially an expensive operation (also
they form a barrier-like synchronization), and people have suggested a number of ways to reducing their
impact on the performance of iterative methods.

Exercise 6.28. Iterative methods are typically used for sparse matrices. In that context, you can
argue that the communication involved in an inner product can have a larger influence
on overall performance than the communication in the matrix-vector product. What is
the complexity of the matrix-vector product and the inner product as a function of the
number of processors?

Here are some of the approaches that have been taken.
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• The CG method has two inner products per iteration that are inter-dependent. It is possible to
rewrite the method so that it computes the same iterates (in exact arithmetic, at least) but so that
the two inner products per iteration can be combined. See [33, 40, 148, 195].

• It may be possible to overlap the inner product calculation with other, parallel, calculations [42].
• In the GMRES method, use of the classical Gram-Schmidt (GS) method takes far fewer indepen-
dent inner product than the modified GS method, but it is less stable. People have investigated
strategies for deciding when it is allowed to use the classic GS method [131].

Since computer arithmetic is not associative, inner products are a prime source of results that differ when
the same calculation is executed of two different processor configurations. In section 3.6.5 we sketched a
solution.

6.6.2 Finite element matrix construction

The FEM leads to an interesting issue in parallel computing. For this we need to sketch the basic outline
of how this method works. The FEM derives its name from the fact that the physical objects modeled are
divided into small two or three dimensional shapes, the elements, such as triangles and squares in 2D, or
pyramids and bricks in 3D. On each of these, the function we are modeling is then assumed to polynomial,
often of a low degree, such as linear or bilinear.

Figure 6.15: A finite element domain, parallelization of the matrix construction, and parallelization of
matrix element storage.

The crucial fact is that a matrix element 𝑎𝑖𝑗 is then the sum of computations, specifically certain integrals,
over all elements that contain both variables 𝑖 and 𝑗:

𝑎𝑖𝑗 = ∑
𝑒 ∶ 𝑖,𝑗∈𝑒

𝑎(𝑒)𝑖𝑗 .

The computations in each element share many common parts, so it is natural to assign each element 𝑒
uniquely to a processor 𝑃𝑒 , which then computes all contributions 𝑎(𝑒)𝑖𝑗 . In figure 6.15 element 2 is assigned
to processor 0 and element 4 to processor 1.

Now consider variables 𝑖 and 𝑗 and the matrix element 𝑎𝑖𝑗 . It is constructed as the sum of computations
over domain elements 2 and 4, which have been assigned to different processors. Therefore, no matter
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what processor row 𝑖 is assigned to, at least one processor will have to communicate its contribution to
matrix element 𝑎𝑖𝑗 .
Clearly it is not possibly to make assignments 𝑃𝑒 of elements and 𝑃𝑖 of variables such that 𝑃𝑒 computes in
full the coefficients 𝑎𝑖𝑗 for all 𝑖 ∈ 𝑒. In other words, if we compute the contributions locally, there needs to
be some amount of communication to assemble certain matrix elements. For this reason, modern linear
algebra libraries such as PETSc Parallel Programming book, section 32.4.3 allow any processor to set any
matrix element.

6.6.3 A simple model for iterative method performance

Above, we have already remarked that iterative methods have very little opportunity for data reuse, and
they are therefore characterized as bandwidth-bound algorithms. This allows us to make a simple predic-
tion as to the floating point performance of iterative methods. Since the number of iterations of an iterative
method is hard to predict, by performance here wemean the performance of a single iteration. Unlike with
direct methods for linear systems (see for instance section 6.8.1), the number of flops to solution is very
hard to establish in advance.

First we argue that we can restrict ourselves to the performance of the sparse matrix vector product: the
time spent in this operation is considerably more than in the vector operations. Additionally, most pre-
conditioners have a computational structure that is quite similar to the matrix-vector product.

Let us then consider the performance of the CRS matrix-vector product.

• First we observe that the arrays of matrix elements and column indices have no reuse, so the
performance of loading them is completely determined by the available bandwidth. Caches and
prefetch streams only hide the latency, but do not improve the bandwidth. For eachmultiplication
of matrix element times input vector element we load one floating point number and one integer.
Depending one whether the indices are 32-bit or 64-bit, this means 12 or 16 bytes loaded for each
multiplication.

• The demands for storing the result vector are less important: an output vector element is written
only once for each matrix row.

• The input vector can also be ignored in the bandwidth calculation. At first sight you might think
that indirect indexing into the input vector is more or less random and therefore expensive.
However, let’s take the operator view of a matrix-vector product and consider the space domain
of the PDE fromwhich thematrix stems; see section 4.2.3.We now see that the seemingly random
indexing is in fact into vector elements that are grouped closely together. This means that these
vector elements will likely reside in L3 cache, and therefore accessible with a higher bandwidth
(say, by a factor of at least 5) than data from main memory.

For the parallel performance of the sparse matrix-vector product we consider that in a PDE context each
processor communicates only with a few neighbors. Furthermore, a surface-to-volume argument shows
that the message volume is of a lower order than the on-node computation.

In sum, we conclude that a very simple model for the sparse matrix vector product, and thereby for the
whole iterative solver, consists of measuring the effective bandwidth and computing the performance as
one addition and one multiplication operation per 12 or 16 bytes loaded.
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6.7 Parallel preconditioners
Above (section 5.5.6 and in particular 5.5.6.1) we saw a couple of different choices of 𝐾 . In this section
we will begin the discussion of parallelization strategies. The discussion is continued in detail in the next
sections.

6.7.1 Jacobi preconditioning

The Jacobi method (section 5.5.3) uses the diagonal of𝐴 as preconditioner. Applying this is as parallel as is
possible: the statement 𝑦 ← 𝐾−1𝑥 scales every element of the input vector independently. Unfortunately
the improvement in the number of iterations with a Jacobi preconditioner is rather limited. Therefore we
need to consider more sophisticated methods such ILU. Unlike with the Jacobi preconditioner, parallelism
is then not trivial.

6.7.2 Gauss-Seidel and SOR

Regarding GS and SOR we can remark that they are not often used as preconditioners since they are
intrinsically unsymmetric. For SOR moreover there is the problem of determining a suitable value for 𝜔.
The symmetrized Symmetric Successive Over-Relaxation (SSOR) (is similar enough to ILU) that we will
not discuss it separately.

These methods do find a use as multigrid smoothers, and here an interesting observation is to be made.
Consider the solution of a GS system of equations by wavefronts (section 6.10.1), and imagine several
iterations to be active simultaneously. It is not hard to see that this is equivalent to a multi-color scheme,
be it with a different starting vector. See [2] for the full argument.

6.7.3 The trouble with ILU in parallel

Above we saw that, in a flop counting sense, applying an ILU preconditioner (section 5.5.6.1) is about as
expensive as doing a matrix-vector product. This is no longer true if we run our iterative methods on a
parallel computer.

At first glance the operations are similar. A matrix-vector product 𝑦 = 𝐴𝑥 looks like
for i=1..n

y[i] = sum over j=1..n a[i,j]*x[j]

In parallel this would look like
for i=myfirstrow..mylastrow

y[i] = sum over j=1..n a[i,j]*x[j]

Suppose that a processor has local copies of all the elements of𝐴 and 𝑥 that it will need, then this operation
is fully parallel: each processor can immediately start working, and if the work load is roughly equal, they
will all finish at the same time. The total time for the matrix-vector product is then divided by the number
of processors, making the speedup more or less perfect.

Consider now the forward solve 𝐿𝑥 = 𝑦 , for instance in the context of an ILU preconditioner:
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for i=1..n
x[i] = (y[i] - sum over j=1..i-1 ell[i,j]*x[j]) / a[i,i]

We can simply write the parallel code:

for i=myfirstrow..mylastrow
x[i] = (y[i] - sum over j=1..i-1 ell[i,j]*x[j]) / a[i,i]

but now there is a problem. We can no longer say ‘suppose a processor has local copies of everything in
the right hand side’, since the vector 𝑥 appears both in the left and right hand side.While the matrix-vector
product is in principle fully parallel over the matrix rows, this triangular solve code is recursive, hence
sequential.

In a parallel computing context this means that, for the second processor to start, it needs to wait for
certain components of 𝑥 that the first processor computes. Apparently, the second processor can not start
until the first one is finished, the third processor has to wait for the second, and so on. The disappointing
conclusion is that in parallel only one processor will be active at any time, and the total time is the same as
for the sequential algorithm. This is actually not a big problem in the dense matrix case, since parallelism
can be found in the operations for handling a single row (see section 6.12), but in the sparse case it means
we can not use incomplete factorizations without some redesign.

In the next few subsections we will see different strategies for finding preconditioners that perform effi-
ciently in parallel.

6.7.4 Block Jacobi methods

Various approaches have been suggested to remedy this sequentiality the triangular solve. For instance,
we could simply let the processors ignore the components of 𝑥 that should come from other processors:

for i=myfirstrow..mylastrow
x[i] = (y[i] - sum over j=myfirstrow..i-1 ell[i,j]*x[j])

/ a[i,i]

This is not mathematically equivalent to the sequential algorithm (technically, it is called a block Jacobi
method with ILU as the local solve), but since we’re only looking for an approximation 𝐾 ≈ 𝐴, this is
simply a slightly cruder approximation.

Exercise 6.29. Take the Gauss-Seidel code you wrote above, and simulate a parallel run. What
is the effect of increasing the (simulated) number of processors?

The idea behind block methods can be appreciated pictorially; see figure 6.16. In effect, we make an ILU of
the matrix that we get by ignoring all connections between processors. Since in a BVP all points influence
each other (see section 4.2.1), using a less connected preconditioner will increase the number of iterations
if executed on a sequential computer. However, block methods are parallel and, as we observed above,
a sequential preconditioner is very inefficient in a parallel context, so we put up with this increase in
iterations.
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Figure 6.16: Sparsity pattern corresponding to a block Jacobi preconditioner.

6.7.5 Parallel ILU

The Block Jacobi preconditioner operates by decoupling domain parts. While this may give a method that
is highly parallel, it may give a higher number of iterations than a true ILU preconditioner. Fortunately it is
possible to have a parallel ILU method. Since we need the upcoming material on re-ordering of variables,
we postpone this discussion until section 6.8.2.3.

6.8 Ordering strategies and parallelism

In the foregoing we have remarked on the fact that solving a linear system of equations is inherently a
recursive activity. For dense systems, the number of operations is large enough compared to the recursion
length that finding parallelism is fairly straightforward. Sparse systems, on the other hand, take more
sophistication. In this section we will look at a number of strategies for reordering the equations (or,
equivalently, permuting the matrix) that will increase the available parallelism.

These strategies can all be considered as variants of Gaussian elimination. By making incomplete variants
of them (see section 5.5.6.1), all these strategies also apply to constructing preconditioners for iterative
solution methods.

6.8.1 Nested dissection

In the previous discussions we typically looked at square domains and a lexicographic ordering of the vari-
ables. In this section you will see the nested dissection ordering of variables, which was initially designed
as a way to reduce fill-in; see [74]. More importantly to us, it is also advantageous in a parallel computing
context, as we will now see.

Nested dissection is a recursive process for determining a nontrivial ordering of the unknowns in a do-
main. In the first step, the computational domain is split in two parts, with a dividing strip between them;
see figure 6.17. To be precise, the separator is wide enough that there are no connections between the left
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Figure 6.17: Domain dissection into two unconnected subdomains and a separator.

and right subdomain. The resulting matrix 𝐴DD has a 3 × 3 structure, corresponding to the three parts of
the domain. Since the subdomains Ω1 and Ω2 are not connected, the submatrices 𝐴DD12 and 𝐴DD21 are zero.

𝐴DD = (
𝐴11 ∅ 𝐴13
∅ 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋆ ⋆ 0
⋆ ⋆ ⋆ ⋮

⋱ ⋱ ⋱ ∅ ⋮
⋆ ⋆ ⋆ 0

⋆ ⋆ ⋆
⋆ ⋆ 0
⋆ ⋆ ⋆ ⋮

∅ ⋱ ⋱ ⋱ ⋮
⋆ ⋆ ⋆ 0

⋆ ⋆ ⋆
0 ⋯ ⋯ 0 ⋆ 0 ⋯ ⋯ 0 ⋆ ⋆

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪
⎬⎪
⎭
⎫⎪
⎬⎪
⎭
}

(𝑛2 − 𝑛)/2

(𝑛2 − 𝑛)/2

𝑛

This process of dividing the domain by a separator is also called domain decomposition or substructuring,
although this name is also associated with the mathematical analysis of the resulting matrices [14]. In
this example of a rectangular domain it is of course trivial to find a separator. However, for the type of
equations we get from BVPs it is usually feasible to find a separator efficiently for any domain [139]; see
also section 19.6.2.

Let us now consider the 𝐿𝑈 factorization of this matrix. If we factor it in terms of the 3×3 block structure,
we get

𝐴DD = 𝐿𝑈 = (
𝐼
∅ 𝐼

𝐴31𝐴−111 𝐴32𝐴−122 𝐼
) (

𝐴11 ∅ 𝐴13
𝐴22 𝐴23

𝑆33
)
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where

𝑆33 = 𝐴33 − 𝐴31𝐴−111𝐴13 − 𝐴32𝐴−122𝐴23.

The important fact here is that

• the contributions 𝐴31𝐴−111𝐴13 and 𝐴32𝐴−122𝐴23 can be computed simultaneously, so the factoriza-
tion is largely parallel; and

• both in the forward and backward solve, components 1 and 2 of the solution can be computed
simultaneously, so the solution process is also largely parallel.

The third block can not trivially be handled in parallel, so this introduces a sequential component in the
algorithm. Let’s take a closer look at the structure of 𝑆33.

Exercise 6.30. In section 5.4.3.1 you saw the connection between LU factorization and graph
theory: eliminating a node leads to a graphwith that node removed, butwith certain new
connections added. Show that, after eliminating the first two setsΩ1, Ω2 of variables, the
graph of the remaining matrix on the separator will be fully connected.

The upshot is that after eliminating all the variables in blocks 1 and 2 we are left with a matrix 𝑆33 that is
fully dense of size 𝑛 × 𝑛.

The introduction of a separator gave us a factorization that was two-way parallel. Now we iterate this
process: we put a separator inside blocks 1 and 2 (see figure 6.18), which gives the following matrix
structure:

Figure 6.18: A four-way domain decomposition.

316 Introduction to High Performance Scientific Computing



6.8. Ordering strategies and parallelism

𝐴DD =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐴11 𝐴15 𝐴17
𝐴22 𝐴25 𝐴27

𝐴33 𝐴36 𝐴37
𝐴44 𝐴46 𝐴47

𝐴51 𝐴52 𝐴55 𝐴57
𝐴63 𝐴64 𝐴66 𝐴67

𝐴71 𝐴72 𝐴73 𝐴74 𝐴75 𝐴76 𝐴77

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(Note the similarities with the ‘arrow’ matrix in section 5.4.3.4, and recall the argument that this led to
lower fill-in.) The LU factorization of this is:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐼
𝐼

𝐼
𝐼

𝐴51𝐴−111 𝐴52𝐴−122 𝐼
𝐴63𝐴−133 𝐴64𝐴−144 𝐼

𝐴71𝐴−111 𝐴72𝐴−122 𝐴73𝐴−133 𝐴74𝐴−144 𝐴75𝑆−15 𝐴76𝑆−16 𝐼

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐴11 𝐴15 𝐴17
𝐴22 𝐴25 𝐴27

𝐴33 𝐴36 𝐴37
𝐴44 𝐴46 𝐴47

𝑆5 𝐴57
𝑆6 𝐴67

𝑆7

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

𝑆5 = 𝐴55 − 𝐴51𝐴−111𝐴15 − 𝐴52𝐴−122𝐴25, 𝑆6 = 𝐴66 − 𝐴63𝐴−133𝐴36 − 𝐴64𝐴−144𝐴46
𝑆7 = 𝐴77 − ∑𝑖=1,2,3,4 𝐴7𝑖𝐴−1𝑖𝑖 𝐴𝑖7 − ∑𝑖=5,6 𝐴7𝑖𝑆−1𝑖 𝐴17.

Constructing the factorization now goes as follows:

• Blocks 𝐴𝑖𝑖 are factored in parallel for 𝑖 = 1, 2, 3, 4; similarly the contributions 𝐴5𝑖𝐴−1𝑖𝑖 𝐴𝑖5 for
𝑖 = 1, 2, 𝐴6𝑖𝐴−1𝑖𝑖 𝐴𝑖6 for 𝑖 = 3, 4, and 𝐴7𝑖𝐴−1𝑖𝑖 𝐴𝑖7 for 𝑖 = 1, 2, 3, 4 can be constructed in parallel.

• The Schur complement matrices 𝑆5, 𝑆6 are formed and subsequently factored in parallel, and the
contributions 𝐴7𝑖𝑆−1𝑖 𝐴17 for 𝑖 = 5, 6 are constructed in parallel.

• The Schur complement 𝑆7 is formed and factored.

Analogous to the above reasoning, we conclude that after eliminating blocks 1,2,3,4 the updated matrices
𝑆5, 𝑆6 are dense of size 𝑛/2, and after eliminating blocks 5,6 the Schur complement 𝑆7 is dense of size 𝑛.
Exercise 6.31. Show that solving a system with 𝐴DD has a similar parallelism to constructing

the factorization as described above.

For future reference, we will call the sets 1 and 2 each others’ siblings, and similarly for 3 and 4. The set
5 is the parent of 1 and 2, 6 is the parent of 3 and 4; 5 and 6 are siblings and 7 is the parent of 5 and 6.
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6.8.1.1 Domain decomposition

In figure 6.18 we divided the domain four ways by a recursive process. This leads up to our discussion of
nested dissection. It is also possible to immediately split a domain in any number of strips, or in a grid
of subdomains. As long as the separators are wide enough, this will give a matrix structure with many
independent subdomains. As in the above discussion, an LU factorization will be characterized by

• parallel processing of the subdomains, both in the factorization and 𝐿, 𝑈 solves, and

• a system to be solved on the separator structure.

Figure 6.19: One-way domain decomposition.

Exercise 6.32. The matrix from a two-dimensional BVP has a block tridiagonal structure. Di-
vide the domain in four strips, that is, using three separators (see figure 6.19). Note that
the separators are uncoupled in the original matrix.
Now sketch the sparsity structure of the resulting system on the separators are elimi-
nation of the subdomains. Show that the system is block tridiagonal.

In all the domain splitting schemes we have discussed so far we have used domains that were rectangular,
or ‘brick’ shaped, in more than two dimensions. All of these arguments are applicable to more general
domains in two or three dimensions, but things like finding a separator become much harder [138], and
that holds even more for the parallel case. See section 19.6.2 for some introduction to this topic.
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6.8.1.2 Complexity

The nested dissection method repeats the above process until the subdomains are very small. For a theo-
retical analysis, we keep dividing until we have subdomains of size 1 × 1, but in practice one could stop at
sizes such as 32, and use an efficient dense solver to factor and invert the blocks.

To derive the complexity of the algorithm, we take another look at figure 6.18, and see that complexity
argument, the total space a full recursive nested dissection factorization needs is the sum of

• one dense matrix on a separator of size 𝑛, plus
• two dense matrices on separators of size 𝑛/2,
• taking together 3/2 𝑛2 space and 5/12 𝑛3 time;
• the two terms above then get repeated on four subdomains of size (𝑛/2) × (𝑛/2).

With the observation that 𝑛 = √𝑁 , this sums to

space = 3/2𝑛2 + 4 ⋅ 3/2(𝑛/2)2 + ⋯
= 𝑁(3/2 + 3/2 + ⋯) log 𝑛 terms
= 𝑂(𝑁 log𝑁)

time = 5/12𝑛3/3 + 4 ⋅ 5/12(𝑛/2)3/3 + ⋯
= 5/12𝑁 3/2(1 + 1/4 + 1/16 + ⋯)
= 𝑂(𝑁 3/2)

Apparently, we now have a factorization that is parallel to a large extent, and that is done in 𝑂(𝑁 log𝑁)
space, rather than 𝑂(𝑁 3/2) (see section 5.4.3.3). The factorization time has also gone down from 𝑂(𝑁 2)
to 𝑂(𝑁 3/2).
Unfortunately, this space savings only happens in two dimensions: in three dimensions we need

• one separator of size 𝑛 × 𝑛, taking (𝑛 × 𝑛)2 = 𝑁 4/3 space and 1/3 ⋅ (𝑛 × 𝑛)3 = 1/3 ⋅ 𝑁 2 time,
• two separators of size 𝑛 × 𝑛/2, taking 𝑁 3/2/2 space and 1/3 ⋅ 𝑁 2/4 time,
• four separators of size 𝑛/2 × 𝑛/2, taking 𝑁 3/2/4 space and 1/3 ⋅ 𝑁 2/16 time,
• adding up to 7/4𝑁 3/2 space and 21/16𝑁 2/3 time;
• on the next level there are 8 subdomains that contribute these terms with 𝑛 → 𝑛/2 and therefore
𝑁 → 𝑁/8.

This makes the total space

7
4𝑁

3/2(1 + (1/8)4/3 + ⋯) = 𝑂(𝑁 3/2)

and the total time

21
16𝑁

2(1 + 1/16 + ⋯)/3 = 𝑂(𝑁 2).

We no longer have the tremendous savings of the 2D case.
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6.8.1.3 Irregular domains

So far, we have analyzed nested dissection for Cartesian domains. A much more complicated analysis
shows that the order improvement holds for general problems in 2D, and that 3D in general has a higher
complexity [138].

For irregular domains questions such as how to find the separator become more involved. For this, the
concept of a ‘2D domain’ needs to be generalized to that of a planar graph. Sufficiently ‘good’ separators
can be found in such graphs [139], but with sequential algorithms. Parallel algorithms rely on spectral
graph theory; see and 19.6.

6.8.1.4 Parallelism

The nested dissection method clearly introduces a lot of parallelism, and we can characterize it as task
parallelism (section 2.5.3): associated with each separator is a task of factoring its matrix, and later one
of solving a linear system on its variables. However, the tasks are not independent: in figure 6.18 the
factorization on domain 7 has to wait for 5 and 6, and they have to wait for 1,2,3,4. Thus, we have tasks
with dependencies in the form of a tree: each separator matrix can be factored only when its children
have been factored.

Mapping these tasks to processors is not trivial. First of all, if we are dealing with shared memory we can
use a simple task queue:

Queue ← {}
for all bottom level subdomains 𝑑 do

add 𝑑 to the Queue
while Queue is not empty do

if a processor is idle then
assign a queued task to it

if a task is finished AND its sibling is finished then
add its parent to the queue

The main problem here is that at some point we will have more processors than tasks, thus causing load
unbalance. This problem is made more severe by the fact that the last tasks are also the most substantial,
since the separators double in size from level to level. (Recall that the work of factoring a dense matrix
goes up with the third power of the size!) Thus, for the larger separators we have to switch from task
parallelism to medium-grained parallelism, where processors collaborate on factoring a block.

With distributed memory, we can now solve the parallelism problem with a simple task queue, since it
would involve moving large amounts of data. (But recall that work is a higher power of the matrix size,
which this time works in our favor, making communication relatively cheap.) The solution is then to use
some form of domain decomposition. In figure 6.18 we could have four processors, associated with block
1,2,3,4. Processors 1 and 2 would then negotiate which one factors block 5 (and similarly processors 3
and 4 and block 6), or they could both do it redundantly.

6.8.1.5 Preconditioning

As with all factorizations, it is possible to turn the nested dissection method into a preconditioner by
making the factorization incomplete. (For the basic idea of incomplete factorizations, see section 5.5.6.1).
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Figure 6.20: Red-black ordering of a the points on a line.

However, here the factorization is formulated completely in terms of block matrices, and the division by
the pivot element becomes an inversion or system solution with the pivot block matrix. We will not go
into this further; for details see the literature [6, 56, 149].

6.8.2 Variable reordering and coloring: independent sets

Parallelism can be achieved in sparse matrices by using graph coloring (section 19.3). Since a ‘color’ is
defined as points that are only connected to other colors, they are by definition independent of each
other, and therefore can be processed in parallel. This leads us to the following strategy:

1. Decompose the adjacency graph of the problem into a small number of independent sets, called
‘colors’;

2. Solve the problem in a number of sequential steps equal to the number of colors; in each step
there will be large number of independently processable points.

6.8.2.1 Red-black coloring

We start with a simple example, where we consider a tridiagonal matrix 𝐴. The equation 𝐴𝑥 = 𝑏 looks
like

⎛
⎜
⎜
⎝

𝑎11 𝑎12 ∅
𝑎21 𝑎22 𝑎23

𝑎32 𝑎33 𝑎34
∅ ⋱ ⋱ ⋱

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

𝑦1
𝑦2
𝑦3
⋮

⎞
⎟
⎟
⎠

We observe that 𝑥𝑖 directly depends on 𝑥𝑖−1 and 𝑥𝑖+1, but not 𝑥𝑖−2 or 𝑥𝑖+1. Thus, let us see what happens
if we permute the indices to group every other component together.

Pictorially, we take the points 1, … , 𝑛 and color them red and black (figure 6.20), then we permute them
to first take all red points, and subsequently all black ones. The correspondingly permuted matrix looks
as follows:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11 𝑎12
𝑎33 𝑎32 𝑎34

𝑎55 ⋱ ⋱
⋱

𝑎21 𝑎23 𝑎22
𝑎43 𝑎45 𝑎44

⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥1
𝑥3
𝑥5
⋮
𝑥2
𝑥4
⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑦1
𝑦3
𝑦5
⋮
𝑦2
𝑦4
⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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With this permuted 𝐴, the Gauss-Seidel matrix 𝐷𝐴 + 𝐿𝐴 looks like

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11 ∅
𝑎33

𝑎55
⋱

𝑎21 𝑎23 𝑎22
𝑎43 𝑎45 𝑎44

⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

What does this buy us? Well, let’s spell out the solution of a system 𝐿𝑥 = 𝑦 .
for 𝑖 = 1, 3, 5, … do

solve 𝑥𝑖 ← 𝑦𝑖/𝑎𝑖𝑖
for 𝑖 = 2, 4, 6, … do

compute 𝑡 = 𝑎𝑖𝑖−1𝑥𝑖−1 + 𝑎𝑖𝑖+1𝑥𝑖+1
solve 𝑥𝑖 ← (𝑦𝑖 − 𝑡)/𝑎𝑖𝑖

Apparently the algorithm has three stages that are each parallel over half the domain points. This is
illustrated in figure 6.21. Theoretically we could accommodate a number of processors that is half the

Figure 6.21: Red-black solution on a 1d domain.

number of the domain points, but in practice each processor will have a subdomain. Now you can see in
figure 6.22 how this causes a very modest amount of communication: each processor sends at most the
data of two red points to its neighbors.

Exercise 6.33. Argue that the adjacency graph here is a bipartite graph.We see that such graphs
(and in general, colored graphs) are associated with parallelism. Can you also point out
performance benefits for non-parallel processors?

Red-black ordering can be applied to two-dimensional problems too. Let us apply a red-black ordering to
the points (𝑖, 𝑗) where 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Here we first apply a successive numbering to the odd points on the
first line (1, 1), (3, 1), (5, 1), …, then the even points of the second line (2, 2), (4, 2), (6, 2), …, the odd points
on the third line, et cetera. Having thus numbered half the points in the domain, we continue with the
even points in the first line, the odd points in the second, et cetera. As you can see in figure 6.23, now the
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Figure 6.22: Parallel red-black solution on a 1d domain.

Figure 6.23: Red-black ordering of the variables of a two-dimensional domain.

red points are only connected to black points, and the other way around. In graph theoretical terms, you
have found a coloring (see appendix 19 for the definition of this concept) of the matrix graph with two
colors.

Exercise 6.34. Apply the red-black ordering to the 2D BVP (4.51). Sketch the resulting matrix
structure.

The red-black ordering is a simple example of graph coloring (sometimes called multi-coloring). In simple
cases, such as the unit square domain we considered in section 4.2.3 or its extension to 3D, the color
number of the adjacency graph is readily determined; in less regular cases it is harder.

Exercise 6.35. You saw that a red-black ordering of unknowns coupled with the regular five-
point star stencil give two subsets of variables that are not connected among themselves,
that is, they form a two-coloring of the matrix graph. Can you find a coloring if nodes
are connected by the second stencil in figure 4.3?
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6.8.2.2 General coloring

There is a simple bound for the number of colors needed for the graph of a sparse matrix: the number of
colors is at most 𝑑 + 1 where 𝑑 is the degree of the graph. To see that we can color a graph with degree 𝑑
using 𝑑 +1 colors, consider a node with degree 𝑑 . No matter how its neighbors are colored, there is always
an unused color among the 𝑑 + 1 available ones.

Exercise 6.36. Consider a sparsematrix, where the graph can be coloredwith 𝑑 colors. Permute
the matrix by first enumerating the unknowns of the first color, then the second color, et
cetera. What can you say about the sparsity pattern of the resulting permuted matrix?

If you are looking for a direct solution of the linear system you can repeat the process of coloring and
permuting on the matrix that remains after you have eliminated one color. In the case of a tridiagonal
matrix you saw that this remainingmatrix was again tridiagonal, so it is clear how to continue the process.
This is called recursive doubling. If the matrix is not tridiagonal but block tridiagonal, this operation can
be performed on blocks.

6.8.2.3 Multi-color parallel ILU

In section 6.8.2 you saw the combination of graph coloring and permutation. Let 𝑃 be the permutation
that groups like-colored variables together, then �̃� = 𝑃 𝑡𝐴𝑃 is a matrix with the following structure:

• �̃� has a block structure with the number of blocks equal to the number of colors in the adjacency
graph of 𝐴; and

• each diagonal block is a diagonal matrix.

Now, if you are performing an iterative system solution and you are looking for a parallel preconditioner
you can use this permuted matrix. Consider solving 𝐿𝑦 = 𝑥 with the permuted system.We write the usual
algorithm (section 5.3.4) as

for 𝑐 in the set of colors:
for 𝑖 in the variables of color 𝑐:

𝑦𝑖 ← 𝑥𝑖 − ∑𝑗<𝑖 ℓ𝑖𝑗𝑦𝑗
Exercise 6.37. Show that the flop count of solving a system 𝐿𝑈𝑥 = 𝑦 remains the same (in the

highest order term) when you from an ILU factorization in the natural ordering to one
in the color-permuted ordering.

Where does all this coloring get us? Solving is still sequential…Well, it is true that the outer loop over the
colors is sequential, but all the points of one color are independent of each other, so they can be solved
at the same time. So if we use an ordinary domain partitioning and combine that with a multi-coloring
(see figure 6.24), the processors are all active during all the color stages; see figure 6.25. Ok, if you take a
close look at that figure you’ll see that one processor is not active in the last color. With large numbers of
nodes per processor this is unlikely to happen, but there may be some load imbalance.

One remaining problem is how to generate the multi-coloring in parallel. Finding the optimal color num-
ber is NP-hard. The thing that saves us is that we don’t necessarily need the optimal number because we
are making in incomplete factorization anyway. (There is even an argument that using a slightly larger
number of colors decreases the number of iterations.)

An elegant algorithm for finding a multi-coloring in parallel was found by [113, 142]:
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Figure 6.24: A partitioned domain with colored nodes.

Figure 6.25: Solving a parallel multicolor ILU in four steps.
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1. Assign a random value to each variable.
2. Find the variables that have a higher random value than all their neighbors; that is color 1.
3. Then find the variables that have a higher random value than all their neighbors that are not of

color 1. That is color 2.
4. Iterate until all points are colored.

6.8.3 Irregular iteration spaces

Applying a computational stencil, in the context of explicit time-stepping or as a sparse matrix-vector
product, is parallel. However, in practice it may not be trivial to split the iteration space. If the iteration
space is a Cartesian brick, it is easy, even with nested parallelism.

However, in practice, iterations spaces can be much more complicated. In such cases the following can be
done:

1. The iteration loop is traversed to count the total number of inner iterations; this is then divide
in as many parts as there processes.

2. The loop is traversed to find the starting and ending index values for each process.
3. The loop code is then rewritten so that it can run over such a subrange.

For a more general discussion, see section 2.10 about load balancing.

6.8.4 Ordering for cache efficiency

The performance of stencil operations is often quite low. The operations have no obvious cache reuse;
often they resemble stream operations where long streams of data are retrieved from memory and used
only once. If only a single stencil evaluationwas done, that would be the end of the story. However, usually
we do many such updates, and we can apply techniques similar to loop tiling described in section 1.8.9.

We can do better than with plain tiling if we take the shape of the stencil into account. Figure 6.26 shows

Figure 6.26: First and second step in cache-optimized iteration space traversal.

(left) how we first compute a time-space trapezoid that is cache-contained. Then (right) we compute
another cache-contained trapezoid that builds on the first [69].

6.9 Parallelism in solving linear systems from PDEs

The numerical solution of PDEs is an important activity, and the precision required often makes it a prime
candidate for parallel treatment. If we wonder just how parallel we can be, and in particular what sort of
a speedup is attainable, we need to distinguish between various aspects of the question.
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First of all we can ask if there is any intrinsic parallelism in the problem. On a global level this will typically
not be the case (if parts of the problemwere completely uncoupled, then they would be separate problems,
right?) but on a smaller level there may be parallelism.

For instance, looking at time-dependent problems, and referring to section 4.2.1, we can say that every next
time step is of course dependent on the previous one, but not every individual point on the next time step
is dependent on every point in the previous step: there is a region of influence. Thus it may be possible to
partition the problem domain and obtain parallelism.

In PDEs, we can also make a high-level statement about their parallel solution based on their charac-
terization in term of what is known in PDE theory as characteristics. A wave equation is intuitively a
strictly forward going phenomenon, so the next time step is an explicit, parallel computable, function of
the previous. On the other hand, elliptic problems (section refsec:elliptic) have every point depending on
every other one. Therefore a parallel solution is probably going to involve some sequence of more explicit
approximations. We will discuss that in the next subsection for a simple case.

6.9.1 The Laplace/Poisson equation on the unit square

The Laplace equation on the unit square

−Δ𝑢 = 0, on Ω = [0, 1]2 (6.2)

is the simplest both-serious-and-useful PDE problem. If we discretize this to second order, using either
the FEM or FDM, we obtain the matrix of (4.56).

The following approaches to solving this implicit system exist.

• The Jacobi iteration, equation (5.16), is a fully parallel computation over all points, but it takes
many sweeps over the domain.

• The closely related Gauss-Seidel iteration converges faster, but is implicit. The common way to
parallelize it is by multi-coloring; section 6.8.2. Another approach is possible with wavefronts;
section 6.10.1.

• A much better iteration scheme is to use the CG method; section 5.5.11. This is typically accel-
erated by a preconditioner, for which often some variant of the above Jacobi or Gauss-Seidel
iteration is chosen; see sections 5.5.6 and 6.7.

• Finally, simple equations like the Laplace equation can be solved by multigrid methods, whether
by themselves or as preconditioner for an iterative method. We will not discus that in this book.

6.9.2 Operator splitting

In some contexts, it is necessary to perform implicit calculations through all directions of a two or three-
dimensional array. For example, in section 4.3 you saw how the implicit solution of the heat equation gave
rise to repeated systems

(𝛼𝐼 + 𝑑2
𝑑𝑥2 + 𝑑2

𝑑𝑦2 )𝑢
(𝑡+1) = 𝑢(𝑡) (6.3)
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Without proof, we state that the time-dependent problem can also be solved by

(𝛽𝐼 + 𝑑2
𝑑𝑥2 )(𝛽𝐼 +

𝑑2
𝑑𝑦2 )𝑢

(𝑡+1) = 𝑢(𝑡) (6.4)

for suitable 𝛽 . This scheme will not compute the same values on each individual time step, but it will
converge to the same steady state. The scheme can also be used as a preconditioner in the BVP case.

This approach has considerable advantages, mostly in terms of operation counts: the original system has
to be solved either making a factorization of the matrix, which incurs fill-in, or by solving it iteratively.

Exercise 6.38. Analyze the relative merits of these approaches, giving rough operation counts.
Consider both the case where 𝛼 has dependence on 𝑡 and where it does not. Also discuss
the expected speed of various operations.

A further advantage appears when we consider the parallel solution of (6.4). Note that we have a two-
dimensional set of variables 𝑢𝑖𝑗 , but the operator 𝐼 + 𝑑2𝑢/𝑑𝑥2 only connects 𝑢𝑖𝑗 , 𝑢𝑖𝑗−1, 𝑢𝑖𝑗+1. That is, each
line corresponding to an 𝑖 value can be processed independently. Thus, both operators can be solved fully
parallel using a one-dimensional partition on the domain. The solution of the system in (6.3), on the other
hand, has limited parallelism.

Unfortunately, there is a serious complication: the operator in 𝑥 direction needs a partitioning of the
domain in on direction, and the operator in 𝑦 in the other. The solution usually taken is to transpose the
𝑢𝑖𝑗 value matrix in between the two solves, so that the same processor decomposition can handle both.
This transposition can take a substantial amount of the processing time of each time step.

Exercise 6.39. Discuss the merits of and problems with a two-dimensional decomposition of
the domain, using a grid of 𝑃 = 𝑝 × 𝑝 processors. Can you suggest a way to ameliorate
the problems?

One way to speed up these calculations, is to replace the implicit solve, by an explicit operation; see
section 6.10.3.

6.10 Parallelism and implicit operations
In the discussion of IBVPs (section 4.1.2.2) you saw that implicit operations can have great advantages from
the point of numerical stability. However, you also saw that they make the difference between methods
based on a simple operation such as the matrix-vector product, and ones based on the more complicated
linear system solution. There are further problems with implicit methods when you start computing in
parallel.

The following exercise serves as a recap of some of the issues already identified in our general discussion
of linear algebra; chapter 5.

Exercise 6.40. Let 𝐴 be the matrix

𝐴 =
⎛
⎜
⎜
⎝

𝑎11 ∅
𝑎21 𝑎22

⋱ ⋱
∅ 𝑎𝑛,𝑛−1 𝑎𝑛𝑛

⎞
⎟
⎟
⎠
. (6.5)
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Show that the matrix vector product 𝑦 ← 𝐴𝑥 and the system solution 𝑥 ← 𝐴−1𝑦 ,
obtained by solving the triangular system 𝐴𝑥 = 𝑦 , not by inverting 𝐴, have the same
operation count.
Now consider parallelizing the product 𝑦 ← 𝐴𝑥 . Supposewe have 𝑛 processors, and each
processor 𝑖 stores 𝑥𝑖 and the 𝑖-th row of 𝐴. Show that the product 𝐴𝑥 can be computed
without idle time on any processor but the first.
Can the same be done for the solution of the triangular system 𝐴𝑥 = 𝑦? Show that the
straightforward implementation has every processor idle for an (𝑛−1)/𝑛 fraction of the
computation.

We will now see a number of ways of dealing with this inherently sequential component.

6.10.1 Wavefronts

Above, you saw that solving a lower triangular system of size 𝑁 can have sequential time complexity of
𝑁 steps. In practice, things are often not quite that bad. Implicit algorithms such as solving a triangular
system are inherently sequential, but the number of steps can be less than is apparent at first.

Exercise 6.41. Take another look at the matrix (4.56) from a two-dimensional BVP on the unit
square, discretized with central differences. This matrix resulted from the lexicographic
ordering of the variables. Derive the matrix structure if we order the unknowns by di-
agonals. What can you say about the sizes of the blocks and the structure of the blocks
themselves? What is the implication for parallelism?

We don’t have to form the matrix to arrive at a parallelism analysis. As already remarked, often a stencil
approach is more fruitful. Let us take another look at figure 4.1 that describes the finite difference stencil
of a two-dimensional BVP. The corresponding picture for the stencil of the lower triangular factor is in
figure 6.27. This describes the sequentiality of the lower triangular solve process 𝑥 ← 𝐿−1𝑦 :

𝑥𝑘 = 𝑦𝑘 − ℓ𝑘,𝑘−1𝑥𝑘−1 − ℓ𝑘,𝑘−𝑛𝑥𝑘−𝑛
In other words, the value at point 𝑘 can be found if its neighbors to the left (that is, variable 𝑘 − 1) and
below (variable 𝑘 − 𝑛) are known.

Turning this around, we see that, if we know 𝑥1, we can not only find 𝑥2, but also 𝑥𝑛+1. In the next step
we can determine 𝑥3, 𝑥𝑛+2, and 𝑥2𝑛+1. Continuing this way, we can solve 𝑥 by wavefronts: the values of 𝑥
on each wavefront are independent, so they can be solved in parallel in the same sequential step.

Exercise 6.42. Finish this argument. What is the maximum number of processors we can em-
ploy, and what is the number of sequential steps? What is the resulting efficiency?

Of course you don’t have to use actual parallel processing to exploit this parallelism. Instead you could
use a vector processor , vector instructions, or a GPU [141].

In section 5.4.3.5 you saw the Cuthill-McKee ordering for reducing the fill-in of a matrix. We can modify
this algorithm as follows to give wavefronts:

1. Take an arbitrary node, and call that ‘level zero’.
2. For level 𝑛 + 1, find points connected to level 𝑛, that are not themselves connected.
3. For the so-called ‘reverse Cuthill-McKee ordering’, reverse the numbering of the levels.
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Figure 6.27: The difference stencil of the 𝐿 factor of the matrix of a two-dimensional BVP.

Exercise 6.43. This algorithm is not entirely correct. What is the problem; how can you correct
it? Show that the resulting permuted matrix is no longer tridiagonal, but will likely still
have a band structure.

6.10.2 Recursive doubling

Recursions 𝑦𝑖+1 = 𝑎𝑖𝑦𝑖 + 𝑏𝑖, such as appear in solving a bilinear set of equations (see exercise 4.4), seem
intrinsically sequential. However, you already saw in exercise 1.4 how, at the cost of some preliminary
operations, the computation can be parallelized. The basic idea is that you transform the sequence:

𝑥𝑖+1 = 𝑎𝑖𝑥𝑖 + 𝑦𝑖 ⇒ 𝑥𝑖+2 = 𝑎′𝑖 𝑥𝑖 + 𝑦 ′𝑖 ⇒ 𝑥𝑖+4 = 𝑎″𝑖 𝑥𝑖 + 𝑦″𝑖 ⇒ ⋯

We will now formalize this strategy, generally known as recursive doubling, First, take the general bidiag-
onal matrix from (6.5) and scale it to be of the normalized form, giving the problem to solve 𝑥 in:

⎛
⎜
⎜
⎝

1 ∅
𝑏21 1

⋱ ⋱
∅ 𝑏𝑛,𝑛−1 1

⎞
⎟
⎟
⎠
𝑥 = 𝑦

which we write as 𝐴 = 𝐼 + 𝐵.
Exercise 6.44. Show that the scaling to normalized form can be done by multiplying with a

diagonal matrix. How does solving the system (𝐼 + 𝐵)𝑥 = 𝑦 help in solving 𝐴𝑥 = 𝑦?
What are the operation counts of solving the system in the two different ways?
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Now we do something that looks like Gaussian elimination, except that we do not start with the first row,
but the second. (What would happen if you did Gaussian elimination or LU decomposition on the matrix
𝐼 + 𝐵?) We use the second row to eliminate 𝑏32:

⎛
⎜
⎜
⎜
⎝

1 ∅
1

−𝑏32 1
⋱

∅ 1

⎞
⎟
⎟
⎟
⎠

×
⎛
⎜
⎜
⎜
⎝

1 ∅
𝑏21 1

𝑏32 1
⋱ ⋱

∅ 𝑏𝑛,𝑛−1 1

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

1 ∅
𝑏21 1

−𝑏32𝑏21 0 1
∅ 𝑏𝑛,𝑛−1 1

⎞
⎟
⎟
⎠

whichwewrite as 𝐿(2)𝐴 = 𝐴(2). We also compute 𝐿(2)𝑦 = 𝑦 (2) so that𝐴(2)𝑥 = 𝑦 (2) has the same solution as
𝐴𝑥 = 𝑦 . Solving the transformed system gains us a little: after we compute 𝑥1, 𝑥2 and 𝑥3 can be computed
in parallel.

Now we repeat this elimination process by using the fourth row to eliminate 𝑏54, the sixth row to elimi-
nate 𝑏76, et cetera. The final result is, summarizing all 𝐿(𝑖) matrices:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ∅
0 1

−𝑏32 1
0 1

−𝑏54 1
0 1

−𝑏76 1
⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× (𝐼 + 𝐵) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ∅
𝑏21 1

−𝑏32𝑏21 0 1
𝑏43 1

−𝑏54𝑏43 0 1
𝑏65 1

−𝑏76𝑏65 0 1
⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which we write as 𝐿(𝐼 + 𝐵) = 𝐶 , and solving (𝐼 + 𝐵)𝑥 = 𝑦 now becomes 𝐶𝑥 = 𝐿−1𝑦 .
This final result needs close investigation.

• First of all, computing 𝑦 ′ = 𝐿−1𝑦 is simple. (Work out the details. How much parallelism is
available?)

• Solving 𝐶𝑥 = 𝑦 ′ is still sequential, but it no longer takes 𝑛 steps: from 𝑥1 we can get 𝑥3, from
that we get 𝑥5, et cetera. In other words, there is only a sequential relationship between the odd
numbered components of 𝑥 .

• The even numbered components of 𝑥 do not depend on each other, but only on the odd compo-
nents: 𝑥2 follows from 𝑥1, 𝑥4 from 𝑥3, et cetera. Once the odd components have been computed,
admittedly sequentially, this step is fully parallel.

We can describe the sequential solving of the odd components by itself:

⎛
⎜
⎜
⎝

1 ∅
𝑐31 1

⋱ ⋱
∅ 𝑐𝑛,𝑛−1 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑥1
𝑥3
⋮
𝑥𝑛

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

𝑦 ′1
𝑦 ′3
⋮
𝑦 ′𝑛

⎞
⎟
⎟
⎠

where 𝑐𝑖+1𝑖 = −𝑏2𝑛+1,2𝑛𝑏2𝑛,2𝑛−1. In other words, we have reduced a size 𝑛 sequential problem to a sequential
problem of the same kind and a parallel problem, both of size 𝑛/2. Now we can repeat this procedure
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recursively, reducing the original problem to a sequence of parallel operations, each half the size of the
former.

The process of computing all partial sums through recursive doubling is also referred to as a parallel prefix
operation. Here we use a prefix sum, but in the abstract it can be applied to any associative operator; see
section 21.

6.10.3 Approximating implicit by explicit operations, series expansion

There are various reasons why it is sometimes allowed to replace an implicit operation, which, as you
saw above, can be problematic in practice, by a different one that is practically more advantageous.

• Using an explicit method for the heat equation (section 4.3) instead of an implicit one is equally
legitimate, as long as we observe step size restrictions on the explicit method.

• Tinkering with the preconditioner (section 5.5.8) in an iterative method is allowed, since it will
only affect the speed of convergence, not the solution the method converges to. You already saw
one example of this general idea in the block Jacobi method; section 6.7.4. In the rest of this
section you will see how recurrences in the preconditioner, which are implicit operations, can
be replaced by explicit operations, giving various computational advantages.

Solving a linear system is a good example of an implicit operation, and since this comes down to solving
two triangular systems, let us look at ways of finding a computational alternative to solving a lower
triangular system. If 𝑈 is upper triangular and nonsingular, we let 𝐷 be the diagonal of 𝑈 , and we write
𝑈 = 𝐷(𝐼 − 𝐵) where 𝐵 is an upper triangular matrix with a zero diagonal, also called a strictly upper
triangular matrix; we say that 𝐼 − 𝐵 is a unit upper triangular matrix.
Exercise 6.45. Let 𝐴 = 𝐿𝑈 be an LU factorization where 𝐿 has ones on the diagonal, and the

pivots on the diagonal of 𝑈 , as derived in section 5.3. Show how solving a system𝐴𝑥 = 𝑏
can be done, involving only the solution of unit upper and lower triangular systems.
Show that no divisions are needed during the system solution.

Our operation of interest is now solving the system (𝐼 − 𝐵)𝑥 = 𝑦 . We observe that

(𝐼 − 𝐵)−1 = 𝐼 + 𝐵 + 𝐵2 + ⋯ (6.6)

and 𝐵𝑛 = 0 where 𝑛 is the matrix size (check this!), so we can solve (𝐼 − 𝐵)𝑥 = 𝑦 exactly by

𝑥 =
𝑛−1
∑
𝑘=0

𝐵𝑘𝑦.

Of course, we want to avoid computing the powers 𝐵𝑘 explicitly, so we observe that

𝑥1 = ∑1
𝑘=0 𝐵𝑘𝑦 = (𝐼 + 𝐵)𝑦,

𝑥2 = ∑2
𝑘=0 𝐵𝑘𝑦 = (𝐼 + 𝐵(𝐼 + 𝐵))𝑦 = 𝑦 + 𝐵𝑥1,

𝑥3 = ∑3
𝑘=0 𝐵𝑘𝑦 = (𝐼 + 𝐵(𝐼 + 𝐵((𝐼 + 𝐵))))𝑦 = 𝑦 + 𝐵𝑥2

(6.7)

et cetera. The resulting algorithm for evaluating ∑𝑛−1
𝑘=0 𝐵𝑘𝑦 is called Horner’s rule (see section 21.3), and

you see that it avoids computing matrix powers 𝐵𝑘 .
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Exercise 6.46. Suppose that 𝐼 − 𝐵 is bidiagonal. Show that the above calculation takes 𝑛(𝑛 + 1)
operations. (What would it have been if you’d computed the powers of 𝐵 explicitly?)
What is the operation count for computing (𝐼 − 𝐵)𝑥 = 𝑦 by triangular solution?

We have now turned an implicit operation into an explicit one, but unfortunately one with a high opera-
tion count. In practical circumstances, as argued above, however, we can often justify truncating the sum
of matrix powers.

Exercise 6.47. Let 𝐴 be the tridiagonal matrix

𝐴 =
⎛
⎜
⎜
⎜
⎝

2 −1 ∅
−1 2 −1

⋱ ⋱ ⋱
−1

∅ −1 2

⎞
⎟
⎟
⎟
⎠

of the one-dimensional BVP from section 4.2.2.
1. Recall the definition of diagonal dominance in section 5.3.3. Is this matrix diago-

nally dominant?
2. Show that the pivots in an LU factorization of this matrix (without pivoting) satisfy

a recurrence. Hint: show that after 𝑛 elimination steps (𝑛 ≥ 0) the remainingmatrix
looks like

𝐴(𝑛) =
⎛
⎜
⎜
⎜
⎝

𝑑𝑛 −1 ∅
−1 2 −1

⋱ ⋱ ⋱
−1

∅ −1 2

⎞
⎟
⎟
⎟
⎠

and show the relation between 𝑑𝑛+1 and 𝑑𝑛.
3. Show that the sequence 𝑛 ↦ 𝑑𝑛 is descending, and derive the limit value.
4. Write out the 𝐿 and 𝑈 factors in terms of the 𝑑𝑛 pivots.
5. Are the 𝐿 and 𝑈 factors diagonally dominant?

The above exercise implies (note that we did not actually prove it!) that for matrices from BVPs we find
that 𝐵𝑘 ↓ 0, in element size and in norm. This means that we can approximate the solution of (𝐼 −𝐵)𝑥 = 𝑦
by, for instance, 𝑥 = (𝐼 + 𝐵)𝑦 or 𝑥 = (𝐼 + 𝐵 + 𝐵2)𝑦 . Doing this still has a higher operation count than the
direct triangular solution, but it is computationally advantageous in at least two ways:

• The explicit algorithm has a better pipeline behavior.
• The implicit algorithm has problems in parallel, as you have seen; the explicit algorithm is more
easily parallelized.

See also [184]. Of course, this approximation may have further implications for the stability of the overall
numerical algorithm.

Exercise 6.48. Describe the parallelism aspects of Horner’s rule; equation (6.7).
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6.11 Grid updates

One of the conclusions of chapter 4 was that explicit methods for time-dependent problems are computa-
tionally easier than implicit ones. For instance, they typically involve a matrix-vector product rather than
a system solution, and parallelizing explicit operations is fairly simple: each result value of the matrix-
vector product can be computed independently. That does not mean that there are no other computational
aspects worth remarking on.

Since we are dealing with sparse matrices, stemming from some computational stencil, we take the oper-
ator point of view. In figures 6.12 and 6.13 you saw how applying a stencil in each point of the domain
induces certain relations between processors: in order to evaluate the matrix-vector product 𝑦 ← 𝐴𝑥 on
a processor, that processor needs to obtain the 𝑥-values of its ghost region. Under reasonable assumptions
on the partitioning of the domain over the processors, the number of messages involved will be fairly
small.

Exercise 6.49. Reason that, in a FEM or FDM context, the number of messages is 𝑂(1) as ℎ ↓ 0.
In section 1.7.1 you saw that the matrix-vector product has little data reuse, though there is some locality
to the computation; in section 5.4.1.4 it was pointed out that the locality of the sparse matrix-vector
product is even worse because of indexing schemes that the sparsity necessitates. This means that the
sparse product is largely a bandwidth-bound algorithm.

Looking at just a single product there is not much we can do about that. However, often we do a number
of such products in a row, for instance as the steps in a time-dependent process. In that case there may
be rearrangements of the operations that lessen the bandwidth demands. Consider as a simple example

∀𝑖∶ 𝑥(𝑛+1)𝑖 = 𝑓 (𝑥(𝑛)𝑖 , 𝑥(𝑛)𝑖−1, 𝑥(𝑛)𝑖+1) (6.8)

and let’s assume that the set {𝑥(𝑛)𝑖 }𝑖 is too large to fit in cache. This is a model for, for instance, the explicit
scheme for the heat equation in one space dimension; section 4.3.1.1. Schematically:

𝑥(𝑛)0 𝑥(𝑛)1 𝑥(𝑛)2
↓↙ ↘↓↙ ↘↓↙

𝑥(𝑛+1)0 𝑥(𝑛+1)1 𝑥(𝑛+1)2
↓↙ ↘↓↙ ↘↓↙

𝑥(𝑛+2)0 𝑥(𝑛+2)1 𝑥(𝑛+2)2

In the ordinary computation, where we first compute all 𝑥(𝑛+1)𝑖 , then all 𝑥(𝑛+2)𝑖 , the intermediate values at
level 𝑛 + 1 will be flushed from the cache after they were generated, and then brought back into cache as
input for the level 𝑛 + 2 quantities.

However, if we compute not one, but two iterations, the intermediate values may stay in cache. Consider
𝑥(𝑛+2)0 : it requires 𝑥(𝑛+1)0 , 𝑥(𝑛+1)1 , which in turn require 𝑥(𝑛)0 , … , 𝑥(𝑛)2 .

Now suppose that we are not interested in the intermediate results, but only the final iteration. This is the
case if you are iterating to a stationary state, doing multigrid smoothing, et cetera. Figure 6.28 shows a
simple example. The first processor computes 4 points on level 𝑛 + 2. For this it needs 5 points from level
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Figure 6.28: Computation of blocks of grid points over multiple iterations.

𝑛 + 1, and these need to be computed too, from 6 points on level 𝑛. We see that a processor apparently
needs to collect a ghost region of width two, as opposed to just one for the regular single step update. One
of the points computed by the first processor is 𝑥(𝑛+2)3 , which needs 𝑥(𝑛+1)4 . This point is also needed for
the computation of 𝑥(𝑛+2)4 , which belongs to the second processor.

The easiest solution is to let this sort of point on the intermediate level redundantly computed, in the
computation of both blocks where it is needed, on two different processors.

Exercise 6.50. Can you think of cases where a point would be redundantly computed by more
than two processors?

We can give several interpretations to this scheme of computing multiple update steps by blocks.

• First of all, as we motivated above, doing this on a single processor increases locality: if all points
in a colored block (see the figure) fit in cache, we get reuse of the intermediate points.

• Secondly, if we consider this as a scheme for distributedmemory computation, it reducesmessage
traffic. Normally, for every update step the processors need to exchange their boundary data. If
we accept some redundant duplication of work, we can now eliminate the data exchange for the
intermediate levels. The decrease in communication will typically outweigh the increase in work.

Exercise 6.51. Discuss the case of using this strategy for multicore computation. What are the
savings? What are the potential pitfalls?

6.11.1 Analysis

Let’s analyze the algorithm we have just sketched. As in equation (6.8) we limit ourselves to a 1D set of
points and a function of three points. The parameters describing the problem are these:

• 𝑁 is the number of points to be updated, and 𝑀 denotes the number of update steps. Thus, we
perform 𝑀𝑁 function evaluations.

• 𝛼, 𝛽, 𝛾 are the usual parameters describing latency, transmission time of a single point, and time
for an operation (here taken to be an 𝑓 evaluation).

• 𝑏 is the number of steps we block together.

Each halo communication consists of 𝑏 points, and we do this √𝑁/𝑏 many times. The work performed
consists of the𝑀𝑁/𝑝 local updates, plus the redundant work because of the halo. The latter term consists
of 𝑏2/2 operations, performed both on the left and right side of the processor domain.

Victor Eijkhout 335



6. High performance linear algebra

Adding all these terms together, we find a cost of

𝑀
𝑏 𝛼 + 𝑀𝛽 + (𝑀𝑁

𝑝 + 𝑀𝑏) 𝛾 .

We observe that the overhead of 𝛼𝑀/𝑏 + 𝛾𝑀𝑏 is independent of 𝑝,
Exercise 6.52. Compute the optimal value of 𝑏, and remark that it only depends on the archi-

tectural parameters 𝛼, 𝛽, 𝛾 but not on the problem parameters.

6.11.2 Communication and work minimizing strategy

We can make this algorithmmore efficient by overlapping computation with communication. As illustrated
in figure 6.29, each processor start by communicating its halo, and overlapping this communication with
the part of the communication that can be done locally. The values that depend on the halo will then be
computed last.

Figure 6.29: Computation of blocks of grid points over multiple iterations.

Exercise 6.53. What is a great practical problem with organizing your code (with the emphasis
on ‘code’!) this way?

If the number of points per processor is large enough, the amount of communication is low relative to the
computation, and you could take 𝑏 fairly large. However, these grid updates are mostly used in iterative
methods such as the CG method (section 5.5.11), and in that case considerations of roundoff prevent you
from taking 𝑏 too large[33].
Exercise 6.54. Go through the complexity analysis for the non-overlapping algorithm in case

the points are organized in a 2D grid. Assume that each point update involves four
neighbors, two in each coordinate direction.

A further refinement of the above algorithm is possible. Figure 6.30 illustrates that it is possible to use a
halo region that uses different points from different time steps. This algorithm (see [43]) cuts down on
the amount of redundant computation. However, now the halo values that are communicated first need
to be computed, so this requires splitting the local communication into two phases.

6.12 Block algorithms on multicore architectures
In section 5.3.6 you saw that certain linear algebra algorithms can be formulated in terms of submatrices.
This point of view can be beneficial for the efficient execution of linear algebra operations on shared
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Figure 6.30: Computation of blocks of grid points over multiple iterations.

memory architectures such as current multicore processors.

As an example, let us consider the Cholesky factorization, which computes 𝐴 = 𝐿𝐿𝑡 for a symmetric
positive definite matrix 𝐴; see also section 5.3.1.2. Recursively, we can describe the algorithm as follows:

Chol (𝐴11 𝐴𝑡21
𝐴21 𝐴22

) = 𝐿𝐿𝑡 where 𝐿 = (𝐿11 0
�̃�21 Chol(𝐴22 − �̃�21�̃�𝑡21))

and where �̃�21 = 𝐴21𝐿−𝑡11, 𝐴11 = 𝐿11𝐿𝑡11.
(This algorithm applies can be considered both as a scalar and block matrix algorithm. From a point of
performance, by using BLAS 3 routines, we will implicitly consider only the blocked approach.)

In practice, the block implementation is applied to a partitioning

(
finished

𝐴𝑘𝑘 𝐴𝑘,>𝑘
𝐴>𝑘,𝑘 𝐴>𝑘,>𝑘

)

where 𝑘 is the index of the current block row, and the factorization is finished for all indices < 𝑘. The
factorization is written as follows, using BLAS names for the operations:

for 𝑘 = 1, nblocks:
Chol: factor 𝐿𝑘𝐿𝑡𝑘 ← 𝐴𝑘𝑘
Trsm: solve �̃�>𝑘,𝑘 ← 𝐴>𝑘,𝑘𝐿−𝑡𝑘
Gemm: form the product �̃�>𝑘,𝑘�̃�𝑡

>𝑘,𝑘
Syrk: symmmetric rank-𝑘 update 𝐴>𝑘,>𝑘 ← 𝐴>𝑘,>𝑘 − �̃�>𝑘,𝑘�̃�𝑡

>𝑘,𝑘
The key to parallel performance is to partition the indices > 𝑘 and write the algorithm in terms of these
blocks:

⎛
⎜
⎜
⎜
⎝

finished
𝐴𝑘𝑘 𝐴𝑘,𝑘+1 𝐴𝑘,𝑘+2 ⋯

𝐴𝑘+1,𝑘 𝐴𝑘+1,𝑘+1 𝐴𝑘+1,𝑘+2 ⋯
𝐴𝑘+2,𝑘 𝐴𝑘+2,𝑘+2

⋮ ⋮

⎞
⎟
⎟
⎟
⎠

The algorithm now gets an extra level of inner loops:
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for 𝑘 = 1, nblocks:
Chol: factor 𝐿𝑘𝐿𝑡𝑘 ← 𝐴𝑘𝑘
for ℓ > 𝑘:

Trsm: solve �̃�ℓ,𝑘 ← 𝐴ℓ,𝑘𝐿−𝑡𝑘
for ℓ1, ℓ2 > 𝑘:

Gemm: form the product �̃�ℓ1,𝑘�̃�𝑡
ℓ2,𝑘

for ℓ1, ℓ2 > 𝑘, ℓ1 ≤ ℓ2:
Syrk: symmmetric rank-𝑘 update 𝐴ℓ1,ℓ2 ← 𝐴ℓ1,ℓ2 − �̃�ℓ1,𝑘�̃�𝑡

ℓ2,𝑘
Now it is clear that the algorithm has a good deal of parallelism: the iterations in every ℓ-loop can be
processed independently. However, these loops get shorter in every iteration of the outer 𝑘-loop, so it
is not immediate how many processors we can accommodate. On the other hand, it is not necessary to
preserve the order of operations of the algorithm above. For instance, after

𝐿1𝐿𝑡1 = 𝐴11, 𝐴21 ← 𝐴21𝐿−𝑡1 , 𝐴22 ← 𝐴22 − 𝐴21𝐴𝑡21
the factorization 𝐿2𝐿𝑡2 = 𝐴22 can start, even if the rest of the 𝑘 = 1 iteration is still unfinished. Thus, there
is probably a lot more parallelism than we would get from just parallelizing the inner loops.

The best way to approach parallelism in this case is to shift away from a control flow view of the algorithm,
where the sequence of operations is prescribed, to a data flow view. In the latter only data dependencies
are indicated, and any ordering of operations that obeys these dependencies is allowed. (Technically,
we abandon the program order of the tasks and replace it with a partial ordering4 .) The best way of
representing the data flowof an algorithm is by constructing aDirected Acyclic Graph (DAG) (see section 19
for a brief tutorial on graphs) of tasks. We add an edge (𝑖, 𝑗) to the graph if task 𝑗 uses the output of task 𝑖.
Exercise 6.55. In section 2.6.1.6 you learned the concept of sequential consistency: a threaded

parallel code program should give the same results when executed in parallel as when
it’s executed sequentially. We have just stated that DAG-based algorithms are free to ex-
ecute tasks in any order that obeys the partial order of the graph nodes. Discuss whether
sequential consistency is a problem in this context.

In our example, we construct a DAG by making a vertex task for every inner iteration. Figure 6.31 shows
the DAG of all tasks of matrix of 4 × 4 blocks. This graph is constructed by simulating the Cholesky
algorithm above,

Exercise 6.56. What is the diameter of this graph? Identify the tasks that lie on the path that
determines the diameter. What is the meaning of these tasks in the context of the algo-
rithm?

This path is called the critical path. Its length determines the execution time of the computation in parallel,
even if an infinite number of processors is available. (These topics were already discussed in section 2.2.4.)

Exercise 6.57. Assume there are 𝑇 tasks that all take a unit time to execute, and assume we
have 𝑝 processors. What is the theoretical minimum time to execute the algorithm?
Now amend this formula to take into account the critical path; call its length 𝐶 .

4. Let’s write 𝑎 ≤ 𝑏 if 𝑎 is executed before 𝑏, then the relation ⋅ ≤ ⋅ is a partial order if 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑎 ⇒ 𝑎 = 𝑏 and
𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ⇒ 𝑎 ≤ 𝑐. The difference with a total ordering, such as program ordering, is that it is not true that 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎:
there can be pairs that are not ordered, meaning that their time ordering is not prescribed.
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In the execution of the tasks a DAG, several observations can be made.

• If more than one update is made to a block, it is probably advantageous to have these updates be
computed by the same process. This simplifies maintaining cache coherence.

• If data is used and later modified, the use must be finished before the modification can start.
This can even be true if the two actions are on different processors, since the memory subsystem
typically maintains cache coherence, so the modifications can affect the process that is reading
the data. This case can be remedied by having a copy of the data in main memory, giving a
reading process data that is reserved (see section 1.5.1).
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Figure 6.31: Graph of task dependencies in a 4 × 4 Cholesky factorization.

340 Introduction to High Performance Scientific Computing



PART II

APPLICATIONS



Chapter 7

Molecular dynamics

Molecular dynamics is a technique for simulating the atom-by-atom behavior of molecules and deriving
macroscopic properties from these atomistic motions. It has application to biological molecules such as
proteins and nucleic acids, as well as natural and synthetic molecules in materials science and nanotech-
nology. Molecular dynamics falls in the category of particle methods, which includes N-body problems in
celestial mechanics and astrophysics, and many of the ideas presented here will carry over to these other
fields. In addition, there are special cases of molecular dynamics including ab initio molecular dynamics
where electrons are treated quantum mechanically and thus chemical reactions can be modeled. We will
not treat these special cases, but will instead concentrate on classical molecular dynamics.

The idea behindmolecular dynamics is very simple: a set of particles interact according to Newton’s law of
motion, 𝐹 = 𝑚𝑎. Given the initial particle positions and velocities, the particle masses and other parame-
ters, as well as a model of the forces that act between particles, Newton’s law of motion can be integrated
numerically to give a trajectory for each of the particles for all future (and past) time. Commonly, the
particles reside in a computational box with periodic boundary conditions.

A molecular dynamics time step is thus composed of two parts:
1: compute forces on all particles
2: update positions (integration).

The computation of the forces is the expensive part. State-of-the-art molecular dynamics simulations
are performed on parallel computers because the force computation is costly and a vast number of time
steps are required for reasonable simulation lengths. In many cases, molecular dynamics is applied to
simulations on molecules with a very large number of atoms as well, e.g., up to a million for biological
molecules and long time scales, and up to billions for other molecules and shorter time scales.

Numerical integration techniques are also of interest in molecular dynamics. For simulations that take a
large number of time steps and for which the preservation of quantities such as energy is more impor-
tant than order of accuracy, the solvers that must be used are different than the traditional ODE solvers
presented in Chapter 4.

In the following, we will introduce force fields used for biomolecular simulations and discuss fast methods
for computing these forces. Then we devote sections to the parallelization of molecular dynamics for
short-range forces and the parallelization of the 3-D FFT used in fast computations of long-range forces.
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We end with a section introducing the class of integration techniques that are suitable for molecular
dynamics simulations. Our treatment of the subject of molecular dynamics in this chapter is meant to be
introductory and practical; for more information, the text [66] is recommended.

7.1 Force Computation

7.1.1 Force Fields

In classical molecular dynamics, the model of potential energy and of the forces that act between atoms
is called a force field. The force field is a tractable but approximate model of quantum mechanical effects
which are computationally too expensive to determine for large molecules. Different force fields are used
for different types of molecules, as well as for the same molecule by different researchers, and none are
ideal.

In biochemical systems, commonly-used force fields model the potential energy function as the sum of
bonded, van der Waals, and electrostatic (Coulomb) energy:

𝐸 = 𝐸bonded + 𝐸Coul + 𝐸vdW.

The potential is a function of the positions of all the atoms in the simulation. The force on an atom is the
negative gradient of this potential at the position of the atom.

The bonded energy is due to covalent bonds in a molecule,

𝐸bonded = ∑
bonds

𝑘𝑖(𝑟𝑖 − 𝑟𝑖,0)2 + ∑
angles

𝑘𝑖(𝜃𝑖 − 𝜃𝑖,0)2 + ∑
torsions

𝑉𝑛(1 + cos(𝑛𝜔 − 𝛾))

where the three terms are, respectively, sums over all covalent bonds, sums over all angles formed by two
bonds, and sums over all dihedral angles formed by three bonds. The fixed parameters 𝑘𝑖, 𝑟𝑖,0, etc. depend
on the types of atoms involved, and may differ for different force fields. Additional terms or terms with
different functional forms are also commonly used.

The remaining two terms for the potential energy 𝐸 are collectively called the nonbonded terms. Compu-
tationally, they form the bulk of the force calculation. The electrostatic energy is due to atomic charges
and is modeled by the familiar

𝐸Coul = ∑
𝑖

∑
𝑗>𝑖

𝑞𝑖𝑞𝑗
4𝜋𝜖0𝑟𝑖𝑗

where the sum is over all pairs of atoms, 𝑞𝑖 and 𝑞𝑗 are the charges on atoms 𝑖 and 𝑗, and 𝑟𝑖𝑗 is the dis-
tance between atoms 𝑖 and 𝑗. Finally, the van der Waals energy approximates the remaining attractive and
repulsive effects, and is commonly modeled by the Lennard-Jones function

𝐸vdW = ∑
𝑖

∑
𝑗>𝑖

4𝜖𝑖𝑗 [(
𝜎𝑖𝑗
𝑟𝑖𝑗

)
12

− (𝜎𝑖𝑗𝑟𝑖𝑗
)
6
]
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where 𝜖𝑖𝑗 and 𝜎𝑖𝑗 are force field parameters depending on atom types. At short distances, the repulsive
(𝑟12) term is in effect, while at long distances, the dispersive (attractive, −𝑟6) term is in effect.

Parallelization of the molecular dynamics force calculation depends on parallelization each of these indi-
vidual types of force calculations. The bonded forces are local computations in the sense that for a given
atom, only nearby atom positions and data are needed. The van der Waals forces are also local and are
termed short-range because they are negligible for large atom separations. The electrostatic forces are
long-range, and various techniques have been developed to speed up these calculations. In the next two
subsections, we separately discuss the computation of short-range and long-range nonbonded forces.

7.1.2 Computing Short-Range Nonbonded Forces

The computation of short-range nonbonded forces for a particle can be truncated beyond a cutoff radius,
𝑟𝑐 , of that particle. The naive approach to perform this computation for a particle 𝑖 is by examining all other
particles and computing their distance to particle 𝑖. For 𝑛 particles, the complexity of this approach is𝑂(𝑛2),
which is equivalent to computing forces between all pairs of particles. There are two data structures, cell
lists and Verlet neighbor lists, that can be used independently for speeding up this calculation, as well as
an approach that combines the two.

(a) Cell list method. (b) Verlet neighbor list method.

Figure 7.1: Computing nonbonded forces within a cutoff, 𝑟𝑐 . To compute forces involving the highlighted
particle, only particles in the shaded regions are considered.

7.1.2.1 Cell Lists

The idea of cell lists appears often in problems where a set of points that are nearby a given point is
sought. Referring to Fig. 7.1(a), where we illustrate the idea with a 2-D example, a grid is laid over the
set of particles. If the grid spacing is no less than 𝑟𝑐 , then to compute the forces on particle 𝑖, only the
particles in the cell containing 𝑖 and the 8 adjacent cells need to be considered. One sweep through all the
particles is used to construct a list of particles for each cell. These cell lists are used to compute the forces
for all particles. At the next time step, since the particles have moved, the cell lists must be regenerated
or updated. The complexity of this approach is 𝑂(𝑛) for computing the data structure and 𝑂(𝑛 × 𝑛𝑐) for
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the force computation, where 𝑛𝑐 is the average number of particles in 9 cells (27 cells in 3-D). The storage
required for the cell list data structure is 𝑂(𝑛).
7.1.2.2 Verlet Neighbor Lists

The cell list structure is somewhat inefficient because, for each particle 𝑖, 𝑛𝑐 particles are considered, but
this is much more than the number of particles within the cutoff 𝑟𝑐 . A Verlet neighbor list is a list of
particles within the cutoff for a particle 𝑖. Each particle has its own list, and thus the storage required is
𝑂(𝑛 × 𝑛𝑣 ) where 𝑛𝑣 is the average number of particles within the cutoff. Once these lists are constructed,
computing the forces is then very fast, requiring the minimal complexity 𝑂(𝑛 × 𝑛𝑣 ). Constructing the list
is more expensive, requiring examining all the particles for each particle, i.e., no less than the original
complexity of 𝑂(𝑛2). The advantage, however, is that the neighbor lists can be reused for many time steps
if an expanded cutoff, 𝑟𝑣 is used. Referring to a 2-D example in Fig. 7.1(b), the neighbor list can be reused
as long as no particle from outside the two circles moves inside the inner circle. If the maximum speed of
the particles can be estimated or bounded, then one can determine a number of time steps for which it is
safe to reuse the neighbor lists. (Alternatively, it may be possible to signal when any particle crosses to a
position within the cutoff.) Technically, the Verlet neighbor list is the list of particles within the expanded
cutoff, 𝑟𝑣 .
7.1.2.3 Using Cell and Neighbor Lists Together

The hybrid approach is simply to use Verlet neighbor lists but to use cell lists to construct the neighbor
lists. This reduces the high cost when neighbor lists need to be regenerated. This hybrid approach is very
effective and is often the approach used in state-of-the-art molecular dynamics software.

Both cell lists and Verlet neighbor lists can be modified to exploit the fact that the force 𝑓𝑖𝑗 on particle 𝑖
due to particle 𝑗 is equal to −𝑓𝑗𝑖 (Newton’s third law) and only needs to be computed once. For example,
for cell lists, only 4 of the 8 cells (in 2-D) need to be considered.

7.1.3 Computing Long-Range Forces

Electrostatic forces are challenging to compute because they are long-range: each particle feels a non-
negligible electrostatic force from all other particles in the simulation. An approximation that is sometimes
used is to truncate the force calculation for a particle after a certain cutoff radius (as is done for short-range
van der Waals forces). This generally produces unacceptable artifacts in the results, however.

There are several more accurate methods for speeding up the computation of electrostatic forces, avoiding
the 𝑂(𝑛2) sum over all pairs of 𝑛 particles. We briefly outline some of these methods here.

7.1.3.1 Hierarchical N-body Methods

Hierarchical N-body methods, including the Barnes-Hut method and the fast multipole method, are popu-
lar for astrophysical particle simulations, but are typically too costly for the accuracy required in biomolec-
ular simulations. In the Barnes-Hut method, space is recursively divided into 8 equal cells (in 3-D) until
each cell contains zero or one particles. Forces between nearby particles are computed individually, as
normal, but for distant particles, forces are computed between one particle and a set of distant particles
within a cell. An accuracy measure is used to determine if the force can be computed using a distant cell or
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must be computed by individually considering its children cells. The Barnes-Hut method has complexity
𝑂(𝑛 log 𝑛). The fast multipole method has complexity 𝑂(𝑛); this method calculates the potential and does
not calculate forces directly.

7.1.3.2 Particle-Mesh Methods

In particle-mesh methods, we exploit the Poisson equation

∇2𝜙 = −1
𝜖 𝜌

which relates the potential 𝜙 to the charge density 𝜌, where 1/𝜖 is a constant of proportionality. To utilize
this equation, we discretize space using amesh, assign charges to themesh points, solve Poisson’s equation
on the mesh to arrive at the potential on the mesh. The force is the negative gradient of the potential
(for conservative forces such as electrostatic forces). A number of techniques have been developed for
distributing point charges in space to a set of mesh points and also for numerically interpolating the
force on the point charges due to the potentials at the mesh points. Many fast methods are available for
solving the Poisson equation, including multigrid methods and fast Fourier transforms. With respect to
terminology, particle-mesh methods are in contrast to the naive particle-particle method where forces are
computed between all pairs of particles.

It turns out that particle-mesh methods are not very accurate, and a more accurate alternative is to split
each force into a short-range, rapidly-varying part and a long-range, slowly-varying part:

𝑓𝑖𝑗 = 𝑓 𝑠𝑟𝑖𝑗 + 𝑓 𝑙𝑟𝑖𝑗 .
One way to accomplish this is to weigh 𝑓 by a function ℎ(𝑟), which emphasizes the short-range part (small
𝑟 ) and by 1 − ℎ(𝑟) which emphasizes the long-range part (large 𝑟 ). The short-range part is computed by
computing the interaction of all pairs of particles within a cutoff (a particle-particle method) and the long-
range part is computed using the particle-mesh method. The resulting method, called particle-particle-
particle-mesh (PPPM, or P3M) is due to Hockney and Eastwood, in a series of papers beginning in 1973.

7.1.3.3 Ewald Method

The Ewald method is the most popular of the methods described so far for electrostatic forces in biomolec-
ular simulations and was developed for the case of periodic boundary conditions. The structure of the
method is similar to PPPM in that the force is split between short-range and long-range parts. Again,
the short-range part is computed using particle-particle methods, and the long-range part is computed
using Fourier transforms. Variants of the Ewald method are very similar to PPPM in that the long-range
part uses a mesh, and fast Fourier transforms are used to solve the Poisson equation on the mesh. For
additional details, see, for example [66]. In Section 7.3, we describe the parallelization of the 3-D FFT to
solve the 3-D Poisson equation.

7.2 Parallel Decompositions
We now discuss the parallel computation of forces. Plimpton [160] created a very useful categorization
of molecular dynamics parallelization methods, identifying atom, force, and spatial decomposition meth-
ods. Here, we closely follow his description of these methods. We also add a fourth category which has
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come to be recognized as differing from the earlier categories, called neutral territory methods, a name
coined by Shaw [172]. Neutral territory methods are currently used by many state-of-the-art molecular
dynamics codes. Spatial decompositions and neutral territory methods are particularly advantageous for
parallelizing cutoff-based calculations.

7.2.1 Atom Decompositions

In an atom decomposition, each particle is assigned to one processor, and that processor is responsible for
computing the particle’s forces and updating its position for the entire simulation. For the computation to
be roughly balanced, each processor is assigned approximately the same number of particles (a random
distribution works well). An important point of atom decompositions is that each processor generally
needs to communicate with all other processors to share updated particle positions.

(a) Force matrix. (b) Force matrix, redundancies removed.

Figure 7.2: Atom decomposition, showing a force matrix of 16 particles distributed among 8 processors. A
dot represents a nonzero entry in the force matrix. On the left, the matrix is symmetric; on the right, only
one element of a pair of skew-symmetric elements is computed, to take advantage of Newton’s third law.

An atom decomposition is illustrated by the force matrix in Fig. 7.2(a). For 𝑛 particles, the force matrix
is an 𝑛-by-𝑛 matrix; the rows and columns are numbered by particle indices. A nonzero entry 𝑓𝑖𝑗 in the
matrix denotes a nonzero force on particle 𝑖 due to particle 𝑗 which must be computed. This force may
be a nonbonded and/or a bonded force. When cutoffs are used, the matrix is sparse, as in this example.
The matrix is dense if forces are computed between all pairs of particles. The matrix is skew-symmetric
because of Newton’s third law, 𝑓𝑖𝑗 = −𝑓𝑗𝑖. The lines in Fig. 7.2(a) show how the particles are partitioned.
In the figure, 16 particles are partitioned among 8 processors.

Algorithm 1 shows one time step from the point of view of one processor. At the beginning of the time
step, each processor holds the positions of particles assigned to it.

An optimization is to halve the amount of computation, which is possible because the force matrix is
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Algorithm 1 Atom decomposition time step.
1: send/receive particle positions to/from all other processors
2: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
3: compute forces for particles assigned to this processor
4: update positions (integration) for particles assigned to this processor

skew-symmetric. To do this, we choose exactly one of 𝑓𝑖𝑗 or 𝑓𝑗𝑖 for all skew-symmetric pairs such that each
processor is responsible for computing approximately the same number of forces. Choosing the upper or
lower triangular part of the force matrix is a bad choice because the computational load is unbalanced. A
better choice is to compute 𝑓𝑖𝑗 if 𝑖 + 𝑗 is even in the upper triangle, or if 𝑖 + 𝑗 is odd in the lower triangle,
as shown in Fig. 7.2(b). There are many other options.

When taking advantage of skew-symmetry in the force matrix, all the forces on a particle owned by a
processor are no longer computed by that processor. For example, in Fig. 7.2(b), the forces on particle 1
are no longer computed only by the first processor. To complete the force calculation, processors must
communicate to send forces that are needed by other processors and receive forces that are computed by
other processors. The above algorithm must now be modified by adding a communication step (step 4) as
shown in Algorithm 2.

Algorithm 2 Atom decomposition time step, without redundant calculations.
1: send/receive particle positions to/from all other processors
2: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
3: compute partial forces for particles assigned to this processor
4: send particle forces needed by other processors and receive particle forces needed by this processor
5: update positions (integration) for particles assigned to this processor

This algorithm is advantageous if the extra communication is outweighed by the savings in computation.
Note that the amount of communication doubles in general.

7.2.2 Force Decompositions

In a force decomposition, the forces are distributed among the processors for computation. A straightfor-
ward way to do this is to partition the force matrix into blocks and to assign each block to a processor.
Fig. 7.3(a) illustrates this for the case of 16 particles and 16 processors. Particles also need to be assigned
to processors (as in atom decompositions) for the purpose of having processors assigned to update parti-
cle positions. In the example of the Figure, processor 𝑖 is assigned to update the positions of particle 𝑖; in
practical problems, a processor would be assigned to update the positions of many particles. Note that,
again, we first consider the case of a skew-symmetric force matrix.

We now examine the communication required in a time step for a force decomposition. Consider processor
3, which computes partial forces for particles 0, 1, 2, 3, and needs positions from particles 0, 1, 2, 3, and also
12, 13, 14, 15. Thus processor 3 needs to perform communication with processors 0, 1, 2, 3, and processors
12, 13, 14, 15. After forces have been computed by all processors, processor 3 needs to collect forces on
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(a) Force matrix. (b) Force matrix, redundancies removed.

Figure 7.3: Force decomposition, showing a force matrix of 16 particles and forces partitioned among 16
processors.

particle 3 computed by other processors. Thus processor 2 needs to perform communication again with
processors 0, 1, 2, 3.

Algorithm 3 shows what is performed in one time step, from the point-of-view of one processor. At the
beginning of the time step, each processor holds the positions of all the particles assigned to it.

Algorithm 3 Force decomposition time step.
1: send positions of my assigned particles which are needed by other processors; receive row particle

positions needed by my processor (this communication is between processors in the same processor
row, e.g., processor 3 communicates with processors 0, 1, 2, 3)

2: receive column particle positions needed by my processor (this communication is generally with pro-
cessors in another processor row, e.g., processor 3 communicates with processors 12, 13, 14, 15)

3: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
4: compute forces for my assigned particles
5: send forces needed by other processors; receive forces needed for my assigned particles (this com-

munication is between processors in the same processor row, e.g., processor 3 communicates with
processors 0, 1, 2, 3)

6: update positions (integration) for my assigned particles

In general, if there are 𝑝 processors (and 𝑝 is square, for simplicity), then the the force matrix is partitioned
into √𝑝 by √𝑝 blocks. The force decomposition just described requires a processor to communicate in
three steps, with √𝑝 processors in each step. This is much more efficient than atom decompositions which
require communications among all 𝑝 processors.

We can also exploit Newton’s third law in force decompositions. Like for atom decompositions, we first
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choose a modified force matrix where only one of 𝑓𝑖𝑗 and 𝑓𝑗𝑖 is computed. The forces on particle 𝑖 are
computed by a row of processors and now also by a column of processors. Thus an extra step of commu-
nication is needed by each processor to collect forces from a column of processors for particles assigned to
it. Whereas there were three communication steps, there are now four communication steps when New-
ton’s third law is exploited (the communication is not doubled in this case as in atom decompositions).

A modification to the force decomposition saves some communication. In Fig. 7.4, the columns are re-
ordered using a block-cyclic ordering. Consider again processor 3, which computes partial forces for par-
ticles 0, 1, 2, 3. It needs positions from particles 0, 1, 2, 3, as before, but now also with processors 3, 7, 11,
15. The latter are processors in the same processor column as processor 3. Thus all communications are
within the same processor row or processor column, which may be advantageous on mesh-based network
architectures. The modified method is shown as Algorithm 4.

(a) Force matrix. (b) Force matrix, redundancies removed.

Figure 7.4: Force decomposition, with permuted columns in the force matrix. Note that columns 3, 7, 11,
15 are now in the block column corresponding to processors 3, 7, 11, 15 (the same indices), etc.

7.2.3 Spatial Decompositions

In a spatial decomposition, space is decomposed into cells. Each cell is assigned to a processor which is
responsible for computing the forces on particles that lie inside the cell. Fig. 7.5(a) illustrates a spatial
decomposition into 64 cells for the case of a 2-D simulation. (This is a decomposition of space and is not
to be confused with a force matrix.) Typically, the number of cells is chosen to be equal to the number
of processors. Since particles move during the simulation, the assignment of particles to cells changes as
well. This is in contrast to atom and force decompositions.

Fig. 7.5(b) shows one cell (center square) and the region of space (shaded) that contains particles that are
potentially within the cutoff radius, 𝑟𝑐 , with particles in the given cell. The shaded region is often called
the import region, since the given cell must import positions of particles lying in this region to perform its
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Algorithm 4 Force decomposition time step, with permuted columns of force matrix.
1: send positions of my assigned particles which are needed by other processors; receive row particle

positions needed by my processor (this communication is between processors in the same processor
row, e.g., processor 3 communicates with processors 0, 1, 2, 3)

2: receive column particle positions needed by my processor (this communication is generally with pro-
cessors the same processor column, e.g., processor 3 communicates with processors 3, 7, 11, 15)

3: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
4: compute forces for my assigned particles
5: send forces needed by other processors; receive forces needed for my assigned particles (this com-

munication is between processors in the same processor row, e.g., processor 3 communicates with
processors 0, 1, 2, 3)

6: update positions (integration) for my assigned particles

force calculation. Note that not all particles in the given cell must interact with all particles in the import
region, especially if the import region is large compared to the cutoff radius.

(a) Decomposition into 64 cells. (b) Import region for one cell.

Figure 7.5: Spatial decomposition, showing particles in a 2-D computational box, (a) partitioned into 64
cells, (b) import region for one cell.

Algorithm 5 shows what each processor performs in one time step. We assume that at the beginning of
the time step, each processor holds the positions of the particles in its cell.

To exploit Newton’s third law, the shape of the import region can be halved. Now each processor only
computes a partial force on particles in its cell, and needs to receive forces from other processors to
compute the total force on these particles. Thus an extra step of communication is involved. We leave it
as an exercise to the reader to work out the details of the modified import region and the pseudocode for
this case.

In the implementation of a spatial decomposition method, each cell is associated with a list of particles in
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Algorithm 5 Spatial decomposition time step.
1: send positions needed by other processors for particles in their import regions; receive positions for

particles in my import region
2: compute forces for my assigned particles
3: update positions (integration) for my assigned particles

its import region, similar to a Verlet neighbor list. Like a Verlet neighbor list, it is not necessary to update
this list at every time step, if the import region is expanded slightly. This allows the import region list to
be reused for several time steps, corresponding to the amount of time it takes a particle to traverse the
width of the expanded region. This is exactly analogous to Verlet neighbor lists.

In summary, the main advantage of spatial decomposition methods is that they only require communi-
cation between processors corresponding to nearby particles. A disadvantage of spatial decomposition
methods is that, for very large numbers of processors, the import region is large compared to the number
of particles contained inside each cell.

7.2.4 Neutral Territory Methods

Our description of neutral territorymethods follows closely that of Shaw [172]. A neutral territorymethod
can be viewed as combining aspects of spatial decompositions and force decompositions. To parallelize the
integration step, particles are assigned to processors according to a partitioning of space. To parallelize the
force computation, each processor computes the forces between two sets of particles, but these particles
may be unrelated to the particles that have been assigned to the processor for integration. As a result of
this additional flexibility, neutral territory methods may require much less communication than spatial
decomposition methods.

An example of a neutral territory method is shown in Fig. 7.6 for the case of a 2-D simulation. In the
method shown in the Figure, the given processor is assigned the computation of forces between particles
lying in the horizontal bar with particles lying in the vertical bar. These two regions thus form the import
region for this method. By comparing to Fig. 7.6(b), the import region for this neutral territory method
is much smaller than that for the corresponding spatial decomposition method. The advantage is greater
when the size of the cells corresponding to each processor is small compared to the cutoff radius.

After the forces are computed, the given processor sends the forces it has computed to the processors that
need these forces for integration. We thus have Algorithm 6.

Algorithm 6 Neutral territory method time step.
1: send and receive particle positions corresponding to import regions
2: compute forces assigned to this processor
3: send and receive forces required for integration
4: update positions (integration) for particles assigned to this processor

Like other methods, the import region of the neutral territory method can be modified to take advantage
of Newton’s third law.We refer to Shaw [172] for additional details and for illustrations of neutral territory
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Figure 7.6: Neutral territory method, showing particles in a 2-D computational box and the import region
(shaded) for one cell (center square). This Figure can be compared directly to the spatial decomposition
case of Fig. 7.5(b). See Shaw [172] for additional details.

methods in 3-D simulations.

7.3 Parallel Fast Fourier Transform

A common component of many methods for computing long-range forces is the 3-D FFT for solving the
Poisson equation on a 3-D mesh. The Fourier transform diagonalizes the Poisson operator (called the
Laplacian) and one forward and one inverse FFT transformation are required in the solution. Consider
the discrete Laplacian operator 𝐿 (with periodic boundary conditions) and the solution of 𝜙 in −𝐿𝜙 = 𝜌.
Let 𝐹 denote the Fourier transform. The original problem is equivalent to

−(𝐹𝐿𝐹−1)𝐹𝜙 = 𝐹𝜌
𝜙 = −𝐹−1(𝐹𝐿𝐹−1)−1𝐹𝜌.

The matrix 𝐹𝐿𝐹−1 is diagonal. The forward Fourier transform 𝐹 is applied to 𝜌, then the Fourier-space
components are scaled by the inverse of the diagonal matrix, and finally, the inverse Fourier transform
𝐹−1 is applied to obtain the solution 𝜙.
For realistic protein sizes, a mesh spacing of approximately 1 Ångstrom is typically used, leading to a 3-D
mesh that is quite small by many standards: 64 × 64 × 64, or 128 × 128 × 128. Parallel computation would
often not be applied to a problem of this size, but parallel computation must be used because the data 𝜌
is already distributed among the parallel processors (assuming a spatial decomposition is used).

A 3-D FFT is computed by computing 1-D FFTs in sequence along each of the three dimensions. For the
64 × 64 × 64 mesh size, this is 4096 1-D FFTs of dimension 64. The parallel FFT calculation is typically
bound by communication. The best parallelization of the FFT depends on the size of the transforms and
the architecture of the computer network. Below, we first describe some concepts for parallel 1-D FFTs
and then describe some concepts for parallel 3-D FFTs. For current software and research dedicated to the
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parallelization and efficient computation (using SIMD operations) of large 1-D transforms, we refer to the
SPIRAL and FFTW packages. These packages use autotuning to generate FFT codes that are efficient for
the user’s computer architecture.

7.3.1 Parallel 1-D FFT

7.3.1.1 1-D FFT without Transpose

Fig. 7.7 shows the data dependencies (data flow diagram) between the inputs (left) and outputs (right) for
the 16-point radix-2 decimation-in-frequency FFT algorithm. (Not shown is a bit-reversal permutation that
may be necessary in the computation.) The Figure also shows a partitioning of the computation among
four processors. In this parallelization, the initial data is not moved among processors, but communication
occurs during the computation. In the example shown in the Figure, communication occurs in the first
two FFT stages; the final two stages do not involve communication. When communication does occur,
every processor communicates with exactly one other processor.

7.3.1.2 1-D FFT with Transpose

Use of transposes is common to parallelize FFT computations. Fig. 7.8(a) shows the same data flow dia-
gram as in Fig. 7.7, but horizontal lines have been removed and additional index labels have been added
for clarity. As before, the first two FFT stages are performed without communication. The data is then
transposed among the processors. With this transposed data layout, the last two FFT stages can be per-
formed without communication. The final data is not in the original order; an additional transpose may
be needed, or the data may be used in this transposed order. Fig. 7.8(b) shows how the indices are par-
titioned among four processors before and after the transpose. From these two Figures, notice that the
first two stages have data dependencies that only involve indices in the same partition. The same is true
for the second two stages for the partitioning after the transpose. Observe also that the structure of the
computations before and after the transpose are identical.

7.3.2 Parallel 3-D FFT

7.3.2.1 3-D FFT with Block Decomposition

Fig. 7.9(a) shows a block decomposition of the FFT input data when a spatial decomposition is used for a
mesh of size 8 × 8 × 8 distributed across 64 processors arranged in a 4 × 4 × 4 topology. The parallel 1-D
FFT algorithms can be applied in each of the dimensions. For the example shown in the Figure, each 1-D
FFT computation involves 4 processors. Each processor performs multiple 1-D FFTs simultaneously (four
in this example). Within each processor, data is ordered contiguously if traversing one of the dimensions,
and thus data access is strided for computation in the other two dimensions. Strided data access can be
slow, and thus it may be worthwhile to reorder the data within each processor when computing the FFT
for each of the dimensions.

7.3.2.2 3-D FFT with Slab Decomposition

The slab decomposition is shown in Fig. 7.9(b) for the case of 4 processors. Each processor holds one or
more planes of the input data. This decomposition is used if the input data is already distributed in slabs,
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Figure 7.7: Data flow diagram for 1-D FFT for 16 points. The shaded regions show a decomposition for 4
processors (one processor per region). In this parallelization, the first two FFT stages have no communi-
cation; the last two FFT stages do have communication.

or if it can be redistributed this way. The two 1-D FFTs in the plane of the slabs require no communication.
The remaining 1-D FFTs require communication and could use one of the two approaches for parallel 1-D
FFTs described above. A disadvantage of the slab decomposition is that for large numbers of processors,
the number of processors may exceed the number of points in the 3-D FFT along any one dimension. An
alternative is the pencil decomposition below.

7.3.2.3 3-D FFT with Pencil Decomposition

The pencil decomposition is shown in Fig. 7.9(c) for the case of 16 processors. Each processor holds one
or more pencils of the input data. If the original input data is distributed in blocks as in Fig. 7.9(a), then
communication among a row of processors (in a 3-D processor mesh) can distribute the data into the
pencil decomposition. The 1-D FFTs can then be performed with no communication. To perform the 1-D
FFT in another dimension, the data needs to be redistributed into pencils in another dimension. In total,
four communication stages are needed for the entire 3-D FFT computation.

7.4 Integration for Molecular Dynamics

To numerically integrate the system of ordinary differential equations in molecular dynamics, special
methods are required, different than the traditional ODE solvers that were studied in Chapter 4. These
special methods, called symplectic methods, are better than other methods at producing solutions that
have constant energy, for example, for systems that are called Hamiltonian (which include systems from
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(a) Data flow diagram (shown without horizontal lines for clarity) for
1-D FFT for 16 points.

(b) Partitioning of the in-
dices before (left) and after
(right) the transpose.

Figure 7.8: 1-D FFT with transpose. The first two stages do not involve communication. The data is then
transposed among the processors. As a result, the second two stages also do not involve communication.

molecular dynamics). When Hamiltonian systems are integrated with many time steps over a long time
interval, preservation of structure such as total energy is often more important than the order of accuracy
of the method. In this section, wemotivate some ideas and give some details of the Störmer-Verlet method,
which is sufficient for simple molecular dynamics simulations.

Hamiltonian systems are a class of dynamical systems which conserve energy and which can be written
in a form called Hamilton’s equations. Consider, for symplicity, the simple harmonic oscillator

𝑢″ = −𝑢

where 𝑢 is the displacement of a single particle from an equilibrium point. This equation could model a
particle with unit mass on a spring with unit spring constant. The force on a particle at position 𝑢 is −𝑢.
This system does not look like a molecular dyanamics system but is useful for illustrating several ideas.

The above second order equation can be written as a system of first order equations

𝑞′ = 𝑝
𝑝′ = −𝑞

where 𝑞 = 𝑢 and 𝑝 = 𝑢′ which is common notation used in classical mechanics. The general solution is

( 𝑞
𝑝 ) = ( cos 𝑡 sin 𝑡

− sin 𝑡 cos 𝑡 ) ( 𝑞
𝑝 ) .
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(a) Block Decomposition (b) Slab Decomposition (c) Pencil Decomposition

Figure 7.9: Three data decompositions for 3-D FFTs.

The kinetic energy of the simple harmonic oscillator is 𝑝2/2 and the potential energy is 𝑞2/2 (the negative
gradient of potential energy is the force, −𝑞). Thus the total energy is proportional to 𝑞2 + 𝑝2.

Now consider the solution of the system of first order equations by three methods, explicit Euler, implicit
Euler, and a method called the Störmer-Verlet method. The initial condition is (𝑞, 𝑝) = (1, 0). We use a
time step of ℎ = 0.05 and take 500 steps. We plot 𝑞 and 𝑝 on the horizontal and vertical axes, respectively
(called a phase plot). The exact solution, as given above, is a unit circle centered at the origin.

Figure 7.10 shows the solutions. For explicit Euler, the solution spirals outward, meaning the displacement
and momentum of the solution increases over time. The opposite is true for the implicit Euler method.
A plot of the total energy would show the energy increasing and decreasing for the two cases, respec-
tively. The solutions are better when smaller time steps are taken or when higher order methods are used,
but these methods are not at all appropriate for integration of symplectic systems over long periods of
time. Figure 7.10(c) shows the solution using a symplectic method called the Störmer-Verlet method. The
solution shows that 𝑞2 + 𝑝2 is preserved much better than in the other two methods.

(a) Explicit Euler (b) Implicit Euler (c) Störmer-Verlet Method

Figure 7.10: Phase plot of the solution of the simple harmonic oscillator for three methods with initial
value (1,0), time step 0.05, and 500 steps. For explicit Euler, the solution spirals outward; for implicit Euler,
the solution spirals inward; the total energy is best preserved with the Störmer-Verlet method.

Victor Eijkhout 357



7. Molecular dynamics

We derive it the Störmer-Verlet method for the second order equation

𝑢″ = 𝑓 (𝑡, 𝑢)
by simply replacing the left-hand side with a finite difference approximation

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
ℎ2 = 𝑓 (𝑡𝑘 , 𝑢𝑘)

which can be rearranged to obtain the method

𝑢𝑘+1 = 2𝑢𝑘 − 𝑢𝑘−1 + ℎ2𝑓 (𝑡𝑘 , 𝑢𝑘).
The formula can equivalently be derived from Taylor series. The method is similar to linear multistep
methods in that some other technique is needed to supply the initial step of the method. The method is
also time-reversible, because the formula is the same if 𝑘 + 1 and 𝑘 − 1 are swapped. To explain why this
method is symplectic, unfortunately, is beyond the scope of this introduction.

The method as written above has a number of disadvantages, the most severe being that the addition of
the small ℎ2 term is subject to catastrophic cancellation. Thus this formula should not be used in this form,
and a number of mathematically equivalent formulas (which can be derived from the formula above) have
been developed.

One alternative formula is the leap-frog method:

𝑢𝑘+1 = 𝑢𝑘 + ℎ𝑣𝑘+1/2
𝑣𝑘+1/2 = 𝑣𝑘−1/2 + ℎ𝑓 (𝑡𝑘 , 𝑢𝑘)

where 𝑣 is the first derivative (velocity) which is offset from the displacement 𝑢 by a half step. This formula
does not suffer from the same roundoff problems and also makes available the velocities, although they
need to be re-centered with displacements in order to calculate total energy at a given step. The second
of this pair of equations is basically a finite difference formula.

A third form of the Störmer-Verlet method is the velocity Verlet variant:

𝑢𝑘+1 = 𝑢𝑘 + ℎ𝑣𝑘 + ℎ2
2 𝑓 (𝑡𝑘 , 𝑢𝑘)

𝑣𝑘+1 = 𝑣𝑘 + ℎ2
2 (𝑓 (𝑡𝑘 , 𝑢𝑘) + 𝑓 (𝑡𝑘+1, 𝑢𝑘+1))

where now the velocities are computed at the same points as the displacements. Each of these algorithms
can be implemented such that only two sets of quantities need to be stored (two previous positions,
or a position and a velocity). These variants of the Störmer-Verlet method are popular because of their
simplicity, requiring only one costly force evaluation per step. Higher-order methods have generally not
been practical.

The velocity Verlet scheme is also the basis of multiple time step algorithms for molecular dynamics.
In these algorithms, the slowly-varying (typically long-range) forces are evaluated less frequently and
update the positions less frequently than the quickly-varying (typically short-range) forces. Finally, many
state-of-the-art molecular dynamics integrate a Hamiltonian system that has been modified in order to
control the simulation temperature and pressure. Much more complicated symplectic methods have been
developed for these systems.
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Chapter 8

Combinatorial algorithms

In this chapter we will briefly consider a few combinatorial algorithms: sorting, and prime number finding
with the Sieve of Eratosthenes.

Sorting is not a common operation in scientific computing: one expects it to bemore important in databases,
whether these be financial or biological (for instance in sequence alignment). However, it sometimes
comes up, for instance in Adaptive Mesh Refinement (AMR) and other applications where significant ma-
nipulations of data structures occurs.

In this section we will briefly look at some basic algorithms and how they can be done in parallel. For
more details, see [125] and the references therein.

8.1 Brief introduction to sorting

8.1.1 Complexity

There are many sorting algorithms. Traditionally, they have been distinguished by their computational
complexity, that is, given an array of 𝑛 elements, how many operations does it take to sort them, as a
function of 𝑛.
Theoretically one can show that a sorting algorithm has to have at least complexity 𝑂(𝑛 log 𝑛)1. There
are indeed several algorithms that are guaranteed to attain this complexity, but a very popular algorithm,
called Quicksort has only an ‘expected’ complexity of 𝑂(𝑛 log 𝑛), and a worst case complexity of 𝑂(𝑛2).
This behaviour results from the fact that quicksort needs to choose ‘pivot elements’ (we will go into more
detail below in section 8.3), and if these choices are consistently the worst possible, the optimal complexity
is not reached.

1. One can consider a sorting algorithm as a decision tree: a first comparison is made, depending on it two other comparisons
are made, et cetera. Thus, an actual sorting becomes a path through this decision tree. If every path has running time ℎ, the tree
has 2ℎ nodes. Since a sequence of 𝑛 elements can be ordered in 𝑛! ways, the tree needs to have enough paths to accomodate all
of these; in other words, 2ℎ ≥ 𝑛!. Using Stirling’s formula, this means that 𝑛 ≥ 𝑂(𝑛 log 𝑛)
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while the input array has length > 1 do
Find a pivot element of intermediate size
Split the array in two, based on the pivot
Sort the two arrays.

Algorithm 2: The quicksort algorithm.

On the other hand, the very simple bubble sort algorithm always has the same complexity, since it has a
static structure:

for pass from 1 to 𝑛 − 1 do
for 𝑒 from 1 to 𝑛 − pass do

if elements 𝑒 and 𝑒 + 1 are ordered the wrong way then
exchange them

Algorithm 3: The bubble sort algorithm.

It is easy to see that this algorithm has a complexity of 𝑂(𝑛2): the inner loop does 𝑡 comparisons and up
to 𝑡 exchanges. Summing this from 1 to 𝑛−1 gives approximately 𝑛2/2 comparisons and at most the same
number of exchanges.

8.1.2 Sorting networks

Above we saw that some sorting algorithms operate independently of the actual input data, and some
make decisions based on that data. The former class is sometimes called sorting network. It can be consid-
ered as custom hardware that implements just one algorithm. The basic hardware element is the compare-
and-swap element, which has two inputs and two outputs. For two inputs 𝑥, 𝑦 the outputs are max(𝑥, 𝑦)
and min(𝑥, 𝑦).
In figure 8.1 we show buble sort, built up out of compare and swap elements.

Figure 8.1: Bubble sort as a sorting network.

Below we will consider the Bitonic sort algorithm as a prime example of a sorting network.
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8.1.3 Parallel and sequential complexity

Above we remarked that sorting sequentially takes at least 𝑂(𝑁 log𝑁) time. If we can have perfect
speedup, using for simplicity 𝑃 = 𝑁 processors, we would have parallel time 𝑂(log𝑁). If the parallel
time is more than that, we define the sequential complexity as the total number of operations over all
processors.

This equals the number of operations if the parallel algorithm were executed by one process, emulating
all the others. Ideally this would be the same as the number of operations for a single-process algorithm,
but it need not be. If it is larger, we have found another source of overhead: an intrinsic penalty for
using a parallel algorithm. For instance, below we will see that sorting algorithm often have a sequential
complexity of 𝑂(𝑁 log2 𝑁).

8.2 Odd-even transposition sort

Taking another look at figure 8.1, you see that the second pass can actually be started long before the first

Figure 8.2: Overlapping passes in the bubble sort network.

pass is totally finished. This is illustrated in figure 8.2. If we now look at what happens at any given time,
we obtain the odd-even transposition sort algorithm.

Odd-even transposition sort is a simple parallel sorting algorithm, with as main virtue that it is relatively
easy to implement on a linear area of processors. On the other hand, it is not particularly efficient.

A single step of the algorithm consists of two substeps:

• Every even-numbered processor does a compare-and-swap with its right neighbor; then
• Every odd-numbered processor does a compare-and-swap with its right neighbor.

Theorem 3 After 𝑁/2 steps, each consisting of the two substeps just given, a sequency is sorted.
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Proof. In each triplet 2𝑖, 2𝑖 + 1, 2𝑖 + 2, after an even and an odd step the largest element will be in
rightmost position. Proceed by induction.

With a parallel time of 𝑁 , this gives a sequential complexity 𝑁 2 compare-and-swap operations.
Exercise 8.1. Discuss speedup and efficiency of odd-even transposition sort sort, where we

sort 𝑁 numbers of 𝑃 processors; for simplicity we set 𝑁 = 𝑃 so that each processor
contains a single number. Express execution time in compare-and-swap operations.

1. How many compare-and-swap operations does the parallel code take in total?
2. How many sequential steps does the algorithm take? What are 𝑇1, 𝑇𝑝 , 𝑇∞, 𝑆𝑝 , 𝐸𝑝

for sorting 𝑁 numbers? What is the average amount of parallelism?
3. Odd-even transposition sort sort can be considered a parallel implementation of

bubble sort. Now let 𝑇1 refer to the execution time of (sequential) bubble sort. How
does this change 𝑆𝑝 and 𝐸𝑝?

8.3 Quicksort
Quicksort is a recursive algorithm, that, unlike bubble sort, is not deterministic. It is a two step procedure,
based on a reordering of the sequence2:

Algorithm: Dutch National Flag ordering of an array

Input : An array of elements, and a ‘pivot’ value
Output: The input array with elements ordered as red-white-blue, where red elements are

larger than the pivot, white elements are equal to the pivot, and blue elements are
less than the pivot

We state without proof that this can be done in 𝑂(𝑛) operations. With this, quicksort becomes:

Algorithm: Quicksort

Input : An array of elements
Output: The input array, sorted
while The array is longer than one element do

pick an arbitrary value as pivot
apply the Dutch National Flag reordering to this array
Quicksort( the blue elements )
Quicksort( the red elements )

The indeterminacy of this algorithm, and the variance in its complexity, stems from the pivot choice. In
the worst case, the pivot is always the (unique) smallest element of the array. There will then be no blue
elements, the only white element is the pivot, and the recursive call will be on the array of 𝑛 − 1 red
elements. It is easy to see that the running time will then be 𝑂(𝑛2). On the other hand, if the pivot is
always (close to) the median, that is, the element that is intermediate in size, then the recursive calls will
have an about equal running time, and we get a recursive formula for the running time:

𝑇𝑛 = 2𝑇𝑛/2 + 𝑂(𝑛)

2. The name is explained by its origin with the Dutch computer scientist Edsger Dijkstra; see http://en.wikipedia.org/
wiki/Dutch_national_flag_problem.
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which is 𝑂(𝑛 log 𝑛); for proof, see section 14.2.

We will now consider parallel implementations of quicksort.

8.3.1 Quicksort in parallel

A simple parallelization of the quicksort algorithm can be achieved by executing the two recursive calls in
parallel. This is easiest realized with a shared memory model, and threads (section 2.6.1) for the recursive
calls.

function par_qs( data,nprocs ) {
data_lo,data_hi = split(data);
parallel do:

par_qs( data_lo,nprocs/2 );
par_qx( data_hi,nprocs/2 );

}

However, this implementation is not efficient without some effort. First of all, the recursion runs for
log2 𝑛 steps, and the amount of parallelism doubles in every step, so we could think that with 𝑛 processing
elements the whole algorithm takes log2 𝑛 time. However, this ignores that each step does not take a
certain unit time. The problem lies in the splitting step which is not trivially parallel.

Exercise 8.2. Make this argument precise. What is the total running time, the speedup, and the
efficiency of parallelizing the quicksort algorithm this way?

Is there a way to make splitting the arraymore efficient? As it turns out, yes, and the key is to use a parallel
prefix operation; see appendix 21. If the array of values is 𝑥1, … , 𝑥𝑛, we use a parallel prefix to compute
how many elements are less than the pivot 𝜋 :

𝑋𝑖 = #{𝑥𝑗 ∶ 𝑗 < 𝑖 ∧ 𝑥𝑗 < 𝜋}.
With this, if a processor looks at 𝑥𝑖, and 𝑥𝑖 is less than the pivot, it needs to be moved to location 𝑋𝑖 + 1 in
the array where elements are split according to the pivot. Similarly, one would count how many elements
there are over the pivot, and move those accordingly.

This shows that each pivoting step can be done in 𝑂(log 𝑛) time, and since there log 𝑛 steps to the sorting
algorithm, the total algorithm runs in 𝑂((log 𝑛)2) time. The sequential complexity of quicksort is (log2 𝑁)2.

8.3.2 Quicksort on a hypercube

As was apparent from the previous section, for an efficient parallelization of the quicksort algorithm, we
need to make the Dutch National Flag reordering parallel too. Let us then assume that the array has been
partitioned over the 𝑝 processors of a hypercube of dimension 𝑑 (meaning that 𝑝 = 2𝑑 ).
In the first step of the parallel algorithm, we choose a pivot, and broadcast it to all processors. All proces-
sors will then apply the reordering independently on their local data.

In order to bring together the red and blue elements in this first level, every processor is now paired up
with one that has a binary address that is the same in every bit but the most significant one. In each
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pair, the blue elements are sent to the processor that has a 1 value in that bit; the red elements go to the
processor that has a 0 value in that bit.

After this exchange (which is local, and therefore fully parallel), the processors with an address 1𝑥𝑥𝑥𝑥𝑥
have all the red elements, and the processors with an address 0𝑥𝑥𝑥𝑥𝑥 have all the blue elements. The
previous steps can now be repeated on the subcubes.

This algorithm keeps all processors working in every step; however, it is susceptible to load imbalance if
the chosen pivots are far from the median. Moreover, this load imbalance is not lessened during the sort
process.

8.3.3 Quicksort on a general parallel processor

Quicksort can also be done on any parallel machine that has a linear ordering of the processors.We assume
at first that every processor holds exactly one array element, and, because of the flag reordering, sorting
will always involve a consecutive set of processors.

Parallel quicksort of an array (or subarray in a recursive call) starts by constructing a binary tree on the
processors storing the array. A pivot value is chosen and broadcast through the tree. The tree structure is
then used to count on each processor how many elements in the left and right subtree are less than, equal
to, or more than the pivot value.

With this information, the root processor can compute where the red/white/blue regions are going to be
stored. This information is sent down the tree, and every subtree computes the target locations for the
elements in its subtree.

If we ignore network contention, the reordering can now be done in unit time, since each processor sends
at most one element. This means that each stage only takes time in summing the number of blue and red
elements in the subtrees, which is 𝑂(log 𝑛) on the top level, 𝑂(log 𝑛/2) on the next, et cetera. This makes
for almost perfect speedup.

8.4 Radixsort
Most sorting algorithms are based on comparing the full item value. By contrast, radix sort does a number
of partial sorting stages on the digits of the number. For each digit value a ‘bin’ is allocated, and numbers
are moved into these bins. Concatenating these bins gives a partially sorted array, and by moving through
the digit positions, the array gets increasingly sorted.

Consider an example with number of at most two digits, so two stages are needed:

array 25 52 71 12

last digit 5 2 1 2
(only bins 1,2,5 receive data)

sorted 71 52 12 25
next digit 7 5 1 2

sorted 12 25 52 71
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It is important that the partial ordering of one stage is preserved during the next. Inductively we then
arrive at a totally sorted array in the end.

8.4.1 Parallel radix sort

A distributed memory sorting algorithm already has an obvious ‘binning’ of the data, so a natural parallel
implementation of radix sort is based on using 𝑃 , the number of processes, as radix.

We illustrate this with an example on two processors, meaning that we look at binary representations of
the values.

proc0 proc1
array 2 5 7 1

binary 010 101 111 001

stage 1: sort by least significant bit

last digit 0 1 1 1
(this serves as bin number)

sorted 010 101 111 001

stage 2: sort by middle bit

next digit 1 0 1 0
(this serves as bin number)

sorted 101 001 010 111

stage 3: sort by most significant bit

next digit 1 0 0 1
(this serves as bin number)

sorted 001 010 101 111
decimal 1 2 5 7

(We see that there can be load imbalance during the algorithm.)

Analysis:

• Determining the digits under consideration, and determining how many local values go into
which bin are local operations. We can consider this as a connectivity matrix 𝐶 where 𝐶[𝑖, 𝑗] is
the amount of data that process 𝑖 will send to process 𝑗. Each process owns its row of this matrix.

• In order to receive data in the shuffle, each process needs to know how much data will receive
from every other process. This requires a ‘transposition’ of the connectivity matrix. InMPI terms,
this is an all-to-all operation: MPI_Alltoall.

• After this, the actual data can be shuffled in another all-to-all operation. However, this the
amounts differ per 𝑖, 𝑗 combination, we need the MPI_Alltoallv routine.
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8.4.2 Radix sort by most significant digit

It is perfectly possible to let the stages of the radix sort progress frommost to least significant digit, rather
than the reverse. Sequentially this does not change anything of significance.

However,

• Rather than full shuffles, we are shuffling in increasingly small subsets, so even the sequential
algorithm will have increased spatial locality.

• A shared memory parallel version will show similar locality improvements.
• An MPI version no longer needs all-to-all operations. If we recognize that every next stage will
be within a subset of processes, we can use the communicator splitting mechanism.

Exercise 8.3. The locality argument above was done somewhat hand-wavingly. Argue that the
algorithm can be done in both a breadth-first and depth-first fashion. Discuss the relation
of this distinction with the locality argument.

8.5 Samplesort

You saw in Quicksort (section 8.3) that it is possible to use probabilistic elements in a sorting algorithm.
We can extend the idea of picking a single pivot, as in Quicksort, to that of picking as many pivots as there
are processors. Instead of a bisection of the elements, this divides the elements into as many ‘buckets’ as
there are processors. Each processor then sorts its elements fully in parallel.

Input : 𝑝: the number of processors, 𝑁 : the numbers of elements to sort; {𝑥𝑖}𝑖<𝑁 the
elements to sort

Let 𝑥0 = 𝑏0 < 𝑏1 < ⋯ < 𝑏𝑝−1 < 𝑏𝑝 = 𝑥𝑁 (where 𝑥𝑁 > 𝑥𝑁−1 arbitrary)
for 𝑖 = 0, … , 𝑝 − 1 do

Let 𝑠𝑖 = [𝑏𝑖, … 𝑏𝑖+1 − 1]
for 𝑖 = 0, … , 𝑝 − 1 do

Assign the elements in 𝑠𝑖 to processor 𝑖
for 𝑖 = 0, … , 𝑝 − 1 in parallel do

Let processor 𝑖 sort its elements
Algorithm 4: The Samplesort algorithm.

Clearly this algorithm can have severe load imbalance if the buckets are not chosen carefully. Randomly
picking 𝑝 elements is probably not good enough; instead, some form of sampling of the elements is needed.
Correspondingly, this algorithm is known as Samplesort [17].

While the sorting of the buckets, once assigned, is fully parallel, this algorithm still has some problems
regarding parallelism. First of all, the sampling is a sequential bottleneck for the algorithm. Also, the step
where buckets are assigned to processors is essentially an all-to-all operation,

For an analysis of this, assume that there are 𝑃 processes that first function as mappers, then as reducers.
Let 𝑁 be the number of data points, and define a block size 𝑏 ≡ 𝑁/𝑃 . The cost of the processing steps of
the algorithm is:

• The local determination of the bin for each element, which takes time 𝑂(𝑏); and
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• The local sort, for which is we can assume an optimal complexity of 𝑏 log 𝑏.
However, the shuffle step is non-trivial. Unless the data is partially pre-sorted, we can expect the shuffle
to be a full all-to-all, with a time complexity of 𝑃𝛼 + 𝑏𝛽 . Also, this may become a network bottleneck.
Note that in Quicksort on a hypercube there was never any contention for the wires.

Exercise 8.4. Argue that for a small number of processes, 𝑃 ≪ 𝑁 , this algorithm has perfect
speedup and a sequential complexity (see above) of 𝑁 log𝑁 .

Comparing this algorithm to sorting networks like bitonic sort this sorting algorithm looks considerable
simpler: it has only a one-step network. The previous question argued that in the ‘optimistic scaling’ (work
can increase while keeping number of processors constant) the sequential complexity is the same as for
the sequential algorithm. However, in the weak scaling analysis where we increase work and processors
proportionally, the sequential complexity is considerably worse.

Exercise 8.5. Consider the case where we scale both 𝑁 , 𝑃 , keeping 𝑏 constant. Argue that in
this case the shuffle step introduces an 𝑁 2 term into the algorithm.

8.5.1 Sorting through MapReduce

The Terasort benchmark concerns sorting on a large file-based dataset. Thus, it is somewhat of a stan-
dard in big data systems. In particular, MapReduce is a prime candidate; see http://perspectives.
mvdirona.com/2008/07/hadoop-wins-terasort/.

Using MapReduce, the algorithm proceeds as follows:

• A set of key values is determined through sampling or from prior information: the keys are such
that an approximately equal number of records is expected to fall in between each pair. The
number of intervals equals the number of reducer processes.

• The mapper processes then produces key/value pairs where the key is the interval or reducer
number.

• The reducer processes then perform a local sort.

We see that, modulo terminology changes, this is really samplesort.

8.6 Bitonic sort

To motivate bitonic sorting, suppose a sequence 𝑥 = ⟨𝑥0, … , 𝑥𝑛 − 1⟩ consists of an ascending followed by
a descending part. Now split this sequence into two subsequences of equal length defined by:

𝑠1 = ⟨min{𝑥0, 𝑥𝑛/2}, …min{𝑥𝑛/2−1, 𝑥𝑛−1}
𝑠2 = ⟨max{𝑥0, 𝑥𝑛/2}, …max{𝑥𝑛/2−1, 𝑥𝑛−1} (8.1)

From the picture it is easy to see that 𝑠1, 𝑠2 are again sequences with an ascending and descending part.
Moreover, all the elements in 𝑠1 are less than all the elements in 𝑠2.
We call (8.1) an ascending bitonic sorter, sinc the second subsequence contains elements larger than in the
first. Likewise we can construct a descending sorter by reversing the roles of maximum and minimum.
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Figure 8.3: Illustration of a splitting a bitonic sequence.

Figure 8.4: Illustration of a bitonic network that sorts a bitonic sequence of length 16.

It’s not hard to imagine that this is a step in a sorting algorithm: starting out with a sequence on this form,
recursive application of formula (8.1) gives a sorted sequence. Figure 8.4 shows how 4 bitonic sorters, over
distances 8,4,2,1 respectively, will sort a sequence of length 16.

The actual definition of a bitonic sequence is slightly more complicated. A sequence is bitonic if it conists
of an ascending part followed by a descending part, or is a cyclic permutation of such a sequence.

Exercise 8.6. Prove that splitting a bitonic sequence according to formula (8.1) gives two bitonic
sequences.

So the question is how to get a bitonic sequence. The answer is to use larger and larger bitonic networks.

• A bitonic sort of two elements gives you a sorted sequence.
• If you have two sequences of length two, one sorted up, the other sorted down, that is a bitonic
sequence.

• So this sequence of length four can be sorted in two bitonic steps.
• And two sorted sequences of length four form a bitonic sequence of length;
• which can be sorted in three bitonic steps; et cetera.
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Figure 8.5: Full bitonic sort for 16 elements.

From this description you see that you log2 𝑁 stages to sort 𝑁 elements, where the 𝑖-th stage is of
length log2 𝑖. This makes the total sequential complexity of bitonic sort (log2 𝑁)2.
The sequence of operations in figure 8.5 is called a sorting network, built up out of simple compare-and-
swap elements. There is no dependence on the value of the data elements, as is the case with quicksort.

8.7 Prime number finding

The sieve of Eratosthenes is a very old method for finding prime numbers. In a way, it is still the basis of
many more modern methods.

Write down all natural numbers from 2 to some upper bound 𝑁 , and we are going to mark these numbers
as prime or definitely not-prime. All numbers are initially unmarked.

• The first unmarked number is 2: mark it as prime, and mark all its multiples as not-prime.
• The first unmarked number is 3: mark it as prime, and mark all its multiples as not-prime.
• The next number is 4, but it has been marked already, so mark 5 and its multiples.
• The next number is 6, but it has been marked already, so mark 7 and its multiples.
• Numbers 8,9,10 have been marked, so continue with 11.
• Et cetera.
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Graph analytics

Various problems in scientific computing can be formulated as graph problems; for an introduction to
graph theory see Appendix 19). For instance, you have encountered the problems of load balancing (sec-
tion 2.10.4) and finding independent sets (section 6.8.2).

Many traditional graph algorithms are not immediately, or at least not efficiently, applicable, since the
graphs are often distributed, and traditional graph theory assumes global knowledge of the whole graph.
Moreover, graph theory is often concerned with finding the optimal algorithm, which is usually not a
parallel one. Conversely, in parallel we may get enough of a speedup that we can afford to waste some
cycles on an algorithms that is not optimal sequentially. Therefore, parallel graph algorithms are a field
of study by themselves.

Recently, new types of graph computations in have arisen in scientific computing. Here the graph are no
longer tools, but objects of study themselves. Examples are the World Wide Web or the social graph of
Facebook, or the graph of all possible protein interactions in a living organism.

For this reason, combinatorial computational science is becoming a discipline in its own right. In this
section we look at graph analytics: computations on large graphs. We start by discussing some classic
algorithms, but we give them in an algebraic framework that will make parallel implementation much
easier.

9.1 Traditional graph algorithms

We start by looking at a few ‘classic’ graph algorithms, and we discuss how they can be implemented in
parallel. The connection between graphs and sparse matrices (see Appendix 19) will be crucial here: many
graph algorithms have the structure of a sparse matrix-vector multiplication.

9.1.1 Shortest path algorithms

There are several types of shortest path algorithms. For instance, in the single source shortest path algo-
rithm onewants the shortest path from a given node to any other node. In all-pairs shortest path algorithms
one wants to know the shortest distance between any two nodes. Computing the actual paths is not part
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of these algorithms; however, it is usually easy to include some information by which the path can be
reconstructed later.

We start with a simple algorithm: finding the single source shortest paths in an unweighted graph. This
is simple to do with a Breadth-First Search (BFS): in each step we have a set 𝑈 of nodes for which the
shortest distances are known, and we consider the set 𝑉 of their neighbors.

Input : A graph, and a starting node 𝑠
Output: A function 𝑑(𝑣) that measures the distance from 𝑠 to 𝑣
Let 𝑠 be given, and set 𝑑(𝑠) = 0
Initialize the finished set as 𝑈 = {𝑠}
Set 𝑐 = 1
while not finished do

Let 𝑉 be the set of neighbors of 𝑈 that are not themselves in 𝑈
if 𝑉 = ∅ then

We’re done
else

for 𝑣 ∈ 𝑉 do
Set 𝑑(𝑣) = 𝑐 + 1

𝑈 ← 𝑈 ∪ 𝑉
Increase 𝑐 ← 𝑐 + 1

This way of formulating an algorithm is useful for theoretical purposes: typically you can formulate a
predicate that is true for every iteration of the while loop. This then allows you to prove that the algorithm
terminates and that it computes what you intended it to compute. And on a traditional processor this
would indeed be how you program a graph algorithm. However, these days graphs such as from Facebook
can be enormous, and you want to program your graph algorithm in parallel.

In that case, the traditional formulations fall short:

• They are often based on queues to which nodes are added or subtracted; this means that there is
some form of shared memory.

• Statements about nodes and neighbors are made without wondering if these satisfy any sort of
spatial locality; if a node is touched more than once there is no guarantee of temporal locality.

9.1.2 Floyd-Warshall all-pairs shortest path

The Floyd-Warshall algorithm is an example of an all-pairs shortest paths algorithm. It is a dynamic pro-
gramming algorithm that is based on gradually increasing the set of intermediate nodes for the paths.
Specifically, in step 𝑘 all paths 𝑢 ⇝ 𝑣 are considered that have intermediate nodes in the set 𝑘 = {0, … , 𝑘−1},
and Δ𝑘(𝑢, 𝑣) is the defined as the path length from 𝑢 to 𝑣 where all intermediate nodes are in 𝑘. Initially, for
𝑘 = 0 this means that there are no intermeidate edges, so only graph edges are considered; when 𝑘 ≡ |𝑉 |
we have considered all possible paths and we are done.

The computational step is

Δ𝑘+1(𝑢, 𝑣) = min{Δ𝑘(𝑢, 𝑣), Δ𝑘(𝑢, 𝑘) + Δ𝑘(𝑘, 𝑣)}. (9.1)
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that is, the 𝑘-th estimate for the distance Δ(𝑢, 𝑣) is the minimum of the old one, and a new path that has
become feasible now that we are considering node 𝑘. This latter path is found by concatenating paths
𝑢 ⇝ 𝑘 and 𝑘 ⇝ 𝑣 .

Writing it algorithmically:

for 𝑘 from zero to |𝑉 | do
for all nodes 𝑢, 𝑣 do

Δ𝑢𝑣 ← 𝑓 (Δ𝑢𝑣 , Δ𝑢𝑘 , Δ𝑘𝑣 )

we see that this algorithm has a similar structure to Gaussian elimination, except that there the inner loop
would be ‘for all 𝑢, 𝑣 > 𝑘’. (One could also compare this to the Gauss Jordan algorithm.)

Algebraically:

for 𝑘 from zero to |𝑉 | do
𝐷 ← 𝐷.min[𝐷(∶, 𝑘) min ⋅+ 𝐷(𝑘, ∶)]

The Floyd-Warshall algorithm does not tell you the actual path. Storing those paths during the distance
calculation above is costly, both in time and memory. A simpler solution is possible: we store a second
matrix 𝑛(𝑖, 𝑗) that has the highest node number of the path between 𝑖 and 𝑗.

Exercise 9.1. Include the calculation of 𝑛(𝑖, 𝑗) in the Floyd-Warshall algorithm, and describe
how to use this to find the shortest path between 𝑖 and 𝑗 once 𝑑(⋅, ⋅) and 𝑛(⋅, ⋅) are known.

In section 5.4.3 you saw that the factorization of sparse matrices leads to fill-in, so the same problem
occurs here. This requires flexible data structures, and this problem becomes even worse in parallel; see
section 9.5.

9.1.3 Spanning trees

In an undirected graph 𝐺 = ⟨𝑉 , 𝐸⟩, we call 𝑇 ⊂ 𝐸 a ‘tree’ if it is connected and acyclic. It is called a
spanning tree if additionally its edges contain all vertices. If the graph has edge weights 𝑤𝑖∶ 𝑖 ∈ 𝐸, the tree
has weight ∑𝑒∈𝑇 𝑤𝑒 , and we call a tree a minimum spanning tree if it has minimum weight. A minimum
spanning tree need not be unique.

Prim’s algorithm, a slight variant of Dijkstra’s shortest path algorithm, computes a spanning tree starting
at a root. The root has path length zero, and all other nodes have path length infinity. In each step, all
nodes connected to the known tree nodes are considered, and their best known path length updated.
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Input : A graph ⟨𝑉 , 𝐸⟩ and node 𝑠 ∈ 𝑉
Output: A function ℓ(⋅) giving the shortest distance of any node to 𝑠
for all vertices 𝑣 do

ℓ(𝑣) ← ∞
ℓ(𝑠) ← 0
𝑄 ← 𝑉 − {𝑠} and 𝑇 ← {𝑠}
while 𝑄 ≠ ∅ do

let 𝑢 be the element in 𝑄 with minimal ℓ(𝑢) value
remove 𝑢 from 𝑄, and add it to 𝑇
for 𝑣 ∈ 𝑄 with (𝑢, 𝑣) ∈ 𝐸 do

if ℓ(𝑢) + 𝑤𝑢𝑣 < ℓ(𝑣) then
Set ℓ(𝑣) ← ℓ(𝑢) + 𝑤𝑢𝑣

Figure 9.1: Illustration of the correctness of Dijkstra’s algorithm.

Theorem 4 The above algorithm computes the shortest distance from each node to the root node.

Proof. The key to the correctness of this algorithm is the fact that we choose 𝑢 to have minimal ℓ(𝑢)
value. Call the true shortest path length to a vertex 𝐿(𝑣). Since we start with an ℓ value of infinity
and only ever decrease it, we always have 𝐿(𝑣) ≤ ℓ(𝑣).

Our induction hypothesis will be that, at any stage in the algorithm, for the nodes in the cur-
rent 𝑇 the path length is determined correctly:

𝑢 ∈ 𝑇 ⇒ 𝐿(𝑢) = ℓ(𝑢).

This is certainly true when the tree consists only of the root 𝑠. Now we need to prove the induction
step: if for all nodes in the current tree the path length is correct, then we will also have 𝐿(𝑢) = ℓ(𝑢).
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Suppose this is not true, and there is another path that is shorter. This path needs to go through
some node 𝑦 that is not currently in 𝑇 ; this illustrated in figure 9.1. Let 𝑥 be the node in 𝑇 on the
purported shortest path right before 𝑦 . Now we have ℓ(𝑢) > 𝐿(𝑢) since we do not have the right
pathlength yet, and 𝐿(𝑢) > 𝐿(𝑥) + 𝑤𝑥𝑦 since there is at least one edge (which has positive weight)
between 𝑦 and 𝑢. But 𝑥 ∈ 𝑇 , so 𝐿(𝑥) = ℓ(𝑥) and 𝐿(𝑥)+𝑤𝑥𝑦 = ℓ(𝑥)+𝑤𝑥𝑦 . Now we observe that when
𝑥 was added to 𝑇 its neighbors were updated, so ℓ(𝑦) is ℓ𝑥 + 𝑤𝑥𝑦 or less. Stringing together these
inequalities we find

ℓ(𝑦) < ℓ(𝑥) + 𝑤𝑥𝑦 = 𝐿(𝑥) + 𝑤𝑥𝑦 < 𝐿(𝑢) < ℓ(𝑢)
which contradicts the fact that we choose 𝑢 to have minimal ℓ value.

To parallelize this algorithm we observe that the inner loop has independent iterations and is therefore
parallelizable. However, each iteration of the outer loop has a choice that minimizes a function value.
Computing this choice is a reduction operator, and subsequently it needs to be broadcast. This strategy
makes the sequential time equal to 𝑑 log 𝑃 where 𝑑 is the depth of the spanning tree.

On a single processor, finding the minimum value in an array is naively an 𝑂(𝑁 ) operation, but through
the use of a priority queue this can be reduced to 𝑂(log𝑁). For the parallel version of the spanning tree
algorithm the corresponding term is 𝑂(log(𝑁/𝑃)), not counting the 𝑂(log 𝑃) cost of the reduction.

The Bellman-Ford algorithm is similar to Dijkstra’s but can handle negative edge weights. It runs in
𝑂 (|𝑉 | ⋅ |𝐸|) time.

9.1.4 Graph cutting

Sometimes you may want to partition a graph, for instance for purposes of parallel processing. If this is
done by partitioning the vertices, you are as-it-were cutting edges, which is why this is known as a vertex
cut partitioning.

There are various criteria for what makes a good vertex cut. For instance, you want the cut parts to
be of roughly equal size, in order to balance out parallel work. Since the vertices often correspond to
communication, you also want the number of vertices on the cut (or their sum of weights in case of a
weighted graph) to be small. The graph Laplacian (section 19.6.1) is a popular algorithm for this.

The graph Laplacian algorithm has the advantage over traditional graph partitioning algorithms [139]
that it is easier parallelizable. Another popular computational method uses a multi-level approach:

1. Partition a coarsened version of the graph;
2. Gradually uncoarsen the graph, adapting the partitioning.

Another example of graph cutting is the case of a bipartite graph: a graph with two classes of nodes, and
only edges from the one class to the other. Such a graph can for instance model a population and a set of
properties: edges denote that a person has a certain interest.

9.1.5 Parallization of graph algorithms

Many graph algorithms, such as in section 9.1, are not trivial to parallelize. Here are some considerations.

First of all, unlike in many other algorithms, it is hard to target the outermost loop level, since this is
often a ‘while’ loop, making a parallel stopping test necessary. On the other hand, typically there are
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macro steps that are sequential, but in which a number of variables are considered independently. Thus
there is indeed parallelism to be exploited.

The independent work in graph algorithms is of an interesting structure. While we can identify ‘for all’
loops, which are candidates for parallelization, these are different from what we have seen before.

• The traditional formulations often feature sets of variables that are gradually built up or depleted.
This is implementable by using a shared data structures and a task queue, but this limits the
implementation to some form of shared memory.

• Next, while in each iteration operations are independent, the dynamic set on which they operate
means that assignment of data elements to processors is tricky. A fixed assignment may lead to
much idle time, but dynamic assignment carries large overhead.

• With dynamic task assignment, the algorithm will have little spatial or temporal locality.

9.1.5.1 Parallelizing the all-pairs algorithms

In the single-source shortest path algorithm (section 9.1.1) we didn’t have much choice but to parallelize
by distributing the vector rather than the matrix. This type of distribution is possible here too, and it
corresponds to a one-dimensional distribution of the 𝐷(⋅, ⋅) quantities.
Exercise 9.2. Sketch the parallel implementation of this variant of the algorithm. Show that

each 𝑘-th iteration involves a broadcast with processor 𝑘 as root.

However, this approach runs into the same scaling problems as the matrix-vector product using a one-
dimensional distribution of the matrix; see section 6.2.3. Therefore we need to use a two-dimensional
distribution.

Exercise 9.3. Do the scaling analysis. In a weak scaling scenario with constant memory, what
is the asymptotic efficiency?

Exercise 9.4. Sketch the Floyd-Warshall algorithm using a two-dimensional distribution of the
𝐷(⋅, ⋅) quantities.

Exercise 9.5. The parallel Floyd-Warshall algorithm performs quite some operations on zeros,
certainly in the early stages. Can you design an algorithm that avoids those?

9.2 Linear algebra on the adjacency matrix

A graph is often conveniently described through its adjacency matrix; see section 19.5. In this section we
discuss algorithms that operate on this matrix as a linear algebra object.

In many cases we actually need the left product, that is, multiplying the adjacency matrix from the left
by a row vector. Let for example 𝑒𝑖 be the vector with a 1 in location 𝑖 and zero elsewhere. Then 𝑒𝑡𝑖𝐺 has a
one in every 𝑗 that is a neighbor of 𝑖 in the adjacency graph of 𝐺.

More general, if we compute 𝑥 𝑡𝐺 = 𝑦 𝑡 for a unit basis vector 𝑥 , we have

{𝑥𝑖 ≠ 0
𝑥𝑗 = 0 𝑗 ≠ 𝑖 ∧ 𝐺𝑖𝑗 ≠ 0 ⇒ 𝑦𝑗 ≠ 0.
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Informally we can say that 𝐺 makes a transition from state 𝑖 to state 𝑗.
Another way of looking at this, is that if 𝑥𝑖 ≠ 0, then 𝑦𝑗 ≠ 0 for those 𝑗 for which (𝑖, 𝑗) ∈ 𝐸.

9.2.1 State transitions and Markov chains

Often we have vectors with only nonnegative elements, which case

{𝑥𝑖 ≠ 0
𝑥𝑗 ≥ 0 all 𝑗 ∧ 𝐺𝑖𝑗 ≠ 0 ⇒ 𝑦𝑗 ≠ 0.

This left matrix-vector product has a simple application: Markov chains. Suppose we have a system (see
for instance 20) that can be in any of 𝑛 states, and the probabilities of being in these states sum up to 1.
We can then use the adjacency matrix to model state transitions.

Let 𝐺 by an adjacency matrix with the property that all elements are non-negative. For a Markov process,
the sum of the probabilities of all state transitions, from a given state, is 1. We now interpret elements of
the adjaceny matrix 𝑔𝑖𝑗 as the probability of going from state 𝑖 to state 𝑗. We now have that the elements
in each row sum to 1.

Let 𝑥 be a probability vector, that is, 𝑥𝑖 is the nonegative probability of being in state 𝑖, and the elements
in 𝑥 sum to 1, then 𝑦 𝑡 = 𝑥 𝑡𝐺 describes these probabilities, after one state transition.

Exercise 9.6. For a vector 𝑥 to be a proper probability vector, its elements need to sum to 1.
Show that, with a matrix as just described, the elements of 𝑦 again sum to 1.

9.2.2 Computational form of graph algorithms

Let’s introduce two abstract operators ⨁,⊗ for graph operations. For instance, computing a shortest
distance, can be expressed as the iterative application of a basic step:

The distance to node 𝑦𝑖 is the minimum of the already known distance, and the distance
to a node 𝑥𝑗 plus the value of the arc 𝑎𝑖𝑗 .

We write this step more abstractly as

𝑦𝑖 ⨁𝑎𝑖𝑗 ⊗ 𝑥𝑗
by analogy with the matrix-vector multiplication

𝑦𝑖 ← 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
but with the definitions

𝑦𝑖 ⨁𝜉𝑗 ≡ 𝑦𝑖 ← min{𝑦𝑖, 𝜉𝑗} and 𝑎𝑖𝑗 ⊗ 𝑥𝑗 ≡ {𝑥𝑗 + 𝑎𝑖𝑗 𝑎𝑖𝑗 ≠ 0 ∧ 𝑥𝑗 ≠ ∞
∞ 𝑎𝑖𝑗 = 0 ∨ 𝑥𝑗 = ∞

The shortest distance algorithm now becomes:
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until all distances computed
for nodes 𝑖

for nodes 𝑗
𝑦𝑖 ⨁𝑎𝑖𝑗 ⊗ 𝑥𝑗

You may recognize that this looks like a sequence of matrix-vector products, and indeed, with the ordi-
nary +, × operators that’s what this algorithm would compute. We will continue to explore the similarity
between graph algorithm and linear algebra, though we point out that the above ⨁,⊗ operators are not
linear, or even associative.

This formalism will be used in several algorithms below; for other applications see [127].

9.2.2.1 Algorithm transformations

Analogous to transformations of the matrix-vector product, we now explore different variants of this
graph algorithm that result from loop transformations.

We start by transforming the above algorithm by exchanging the 𝑖, 𝑗 indices, giving the following:
for nodes 𝑗

for nodes 𝑖
𝑦𝑖 ⨁𝑎𝑖𝑗 ⊗ 𝑥𝑗

Next we make the outer loop more efficient by removing certain iterations. We do this by observing that
𝑥𝑗 is invariant in the inner loop, and that the update in the inner loop does nothing for 𝑥𝑗 = ∞, so we
restrict the outer loop to indices where 𝑥𝑗 < ∞. Likewise we restrict the inner loop, and apply a notation

𝑗 → 𝑖 ≡ 𝑎𝑖𝑗 ≠ 0.
Together this gives:
for nodes {𝑗 ∶ 𝑥𝑗 < ∞}

for nodes {𝑖∶ 𝑗 → 𝑖}
𝑦𝑖 ⨁𝑎𝑖𝑗 ⊗ 𝑥𝑗

In this we recognize the classic formulation of graph algorithms:
let the set of known distances 𝐷 = {rootnode}
until 𝐷 = 𝐸, that is, distances known for all edges

for each 𝑗 ∈ 𝐷:
for each 𝑖 connected to 𝑗:

add 𝑖 to 𝐷, with distance 𝑑𝑗 + 𝑒𝑗→𝑖

9.2.2.2 The ‘push model’

In a picture, we see that we can call the algorithm we have just derived a ‘push model’, since it repeatedly
pushes the value of one node onto its neighbors. This is analogous to one form of the matrix-vector
product, where the result vector is the sum of columns of the matrix.

While the algorithm is intuitive, as regards performance it is not great.
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Figure 9.2: Push model of graph algorithms, depicted in matrix-vector form

• Since the result vector is repeatedly updated, it is hard to cache it.
• From nature of the push model, this variant is hard to parallelize, since it may involve conflicting
updates. Thus a threaded code requires atomic operations, critical section, locks, or somesuch.
A distributed memory code is even harder to write.

9.2.2.3 The ‘pull’ model

Figure 9.3: Pull model of graph algorithms, depicted in matrix-vector form

Leaving the original 𝑖, 𝑗 nesting of the loops, we can not optimize the outer loop by removing certain
iterations, so we wind up with:
for all nodes 𝑖

for nodes {𝑗 ∶ 𝑗 → 𝑖}
𝑦𝑖 ⨁𝑎𝑖𝑗 ⊗ 𝑥𝑗

This is similar to the traditional inner-product based matrix vector product, but as a graph algorithm this
variant is not often seen in the traditional literature. We can describe this as a ‘pull model’, since for each
node 𝑖 it pulls updates from all its neighbors 𝑗.
Regarding performance we can now state that:
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• As a sequential algorithm, this can easily cache the output vector.
• This algorithm is easily parallizable over the 𝑖 index; there are no conflicting writes.
• A distributed algorithm is also straightforward, with the computation preceeded by a (neighbor)
allgather of the input vector.

• However, as a traditionally expressed graph algorithm it is wasteful, with many updates of each
𝑦𝑗 component.

9.3 ‘Real world’ graphs

In discussions such as in section 4.2.3 you have seen how the discretization of PDEs leads to computational
problems that has a graph aspect to them. Such graphs have properties thatmake them amenable to certain
kinds of problems. For instance, using FDMs or FEMs to model two or three-dimensional objects leads
graphs where each node is connected to just a few neighbors. This makes it easy to find separators, which
in turn allows such solution methods as nested dissection; see section 6.8.1.

There are however applications with computationally intensive graph problems that do not look like FEM
graphs.Wewill briefly look at the example of the world-wide web, and algorithms suchGoogle’s PageRank
which try to find authoratative nodes.

For now, we will call such graphs random graphs, although this term has a technical meaning too [59].

9.3.1 Parallelization aspects

In section 6.5 we discussed the parallel evaluation of the sparse matrix-vector product. Because of the
sparsity, only a partitioning by block rows or columns made sense. In effect, we let the partitioning be
determined by one of the problem variables. This is also the only strategy that makes sense for single-
source shortest path algorithms.

Exercise 9.7. Can youmake an a priori argument for basing the parallelization on a distribution
of the vector? How much data is involved in this operation, how much work, and how
many sequential steps?

9.3.2 Properties of random graphs

The graphs we have seen in most of this course have properties that stem from the fact that they model
objects in our three-dimensional world. Thus, the typical distance between two nodes is typically 𝑂(𝑁 1/3)
where 𝑁 is the number of nodes. Random graphs do not behave like this: they often have a small world
property where the typical distance is 𝑂(log𝑁). A famous example is the graph of film actors and their
connection by having appeared in the same movie: according to ‘Six degrees of separation’, no two actors
have a distance more than six in this graph. In graph terms this means that the diameter of the graph is
six.

Small-world graphs have other properties, such as the existence of cliques (although these feature too
in higher order FEM problems) and hubs: nodes of a high degree. This leads to implications such as the
following: deleting a random node in such a graph does not have a large effect on shortest paths.
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Exercise 9.8. Considering the graph of airports and the routes that exist between them. If there
are only hubs and non-hubs, argue that deleting a non-hub has no effect on shortest
paths between other airports. On the other hand, consider the nodes ordered in a two-
dimensional grid, and delete an arbitrary node. How many shortest paths are affected?

9.4 Hypertext algorithms

There are several algorithms based on linear algebra for measuring the importance of web sites [132] and
ranking web search results. We will briefly define a few and discuss computational implications.

9.4.1 HITS

In the HITS (Hypertext-Induced Text Search) algorithm, sites have a hub score that measures how many
other sites it points to, and an authority score that measures how many sites point to it. To calculate such
scores we define an incidence matrix 𝐿, where

𝐿𝑖𝑗 = {1 document 𝑖 points to document 𝑗
0 otherwise

The authority scores 𝑥𝑖 are defined as the sum of the hub scores 𝑦𝑗 of everything that points to 𝑖, and the
other way around. Thus

𝑥 = 𝐿𝑡𝑦
𝑦 = 𝐿𝑥

or 𝑥 = 𝐿𝐿𝑡𝑥 and 𝑦 = 𝐿𝑡𝐿𝑦 , showing that this is an eigenvalue problem. The eigenvector we need has only
nonnegative entries; this is known as the Perron vector for a nonnegative matrix, see appendix 13.4. The
Perron vector is computed by a power method; see section 13.3.

A practical search strategy is:

• Find all documents that contain the search terms;
• Build the subgraph of these documents, and possible one or two levels of documents related to
them;

• Compute authority and hub scores on these documents, and present them to the user as an
ordered list.

9.4.2 PageRank

The PageRank [156] basic idea is similar to HITS: it models the question ‘if the user keeps clicking on links
that are somehow the most desirable on a page, what will overall be the set of the most desirable links’.
This is modeled by defining the ranking of a web page is the sum of the rank of all pages that connect to
it. The algorithm It is often phrased iteratively:
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while Not converged do
for all pages 𝑖 do

rank𝑖 ← 𝜖 + (1 − 𝜖)∑𝑗 ∶ connected𝑗→𝑖 rank𝑗

normalize the ranks vector

where the ranking is the fixed point of this algorithm. The 𝜖 term solve the problem that if a page has no
outgoing links, a user that would wind up there would never leave.

Exercise 9.9. Argue that this algorithm can be interpreted in two different ways, roughly cor-
responding to the Jacobi and Gauss-Seidel iterative methods; section 5.5.3.

Exercise 9.10. In the PageRank algorithm, each page ‘gives its rank’ to the ones it connects to.
Give pseudocode for this variant. Show that it corresponds to a matrix-vector product
by columns, as opposed to by rows for the above formulation. What would be a problem
implementing this in shared memory parallelism?

For an analysis of this method, including the question of whether it converges at all, it is better to couch
it completely in linear algebra terms. Again we define a connectivity matrix

𝑀𝑖𝑗 = {1 if page 𝑗 links to 𝑖
0 otherwise

With 𝑒 = (1, … , 1), the vector 𝑑 𝑡 = 𝑒𝑡𝑀 counts how many links there are on a page: 𝑑𝑖 is the number of
links on page 𝑖. We construct a diagonal matrix 𝐷 = diag(𝑑1, …) we normalize 𝑀 to 𝑇 = 𝑀𝐷−1.

Now the columns sums (that is, the sum of the elements in any column) of 𝑇 are all 1, which we can
express as 𝑒𝑡𝑇 = 𝑒𝑡 where 𝑒𝑡 = (1, … , 1). Such a matrix is called stochastic matrix. It has the following
interpretation:

If 𝑝 is a probability vector , that is, 𝑝𝑖 is the probability that the user is looking at page 𝑖,
then 𝑇𝑝 is the probability vector after the user has clicked on a random link.

Exercise 9.11. Mathematically, a probability vector is characterized by the fact that the sum of
its elements is 1. Show that the product of a stochastic matrix and a probability vector
is indeed again a probability vector.

The PageRank algorithm as formulated above would correspond to taking an arbitrary stochastic vector 𝑝,
computing the power method 𝑇𝑝, 𝑇 2𝑝, 𝑇 3𝑝,… and seeing if that sequence converges to something.

There are few problems with this basic algorithm, such as pages with no outgoing links. In general, math-
ematically we are dealing with ‘invariant subspaces’. Consider for instance an web with only 2 pages and
the following adjacency matrix:

𝐴 = (1/2 0
1/2 1) .

Check for yourself that this corresponds to the second page having no outgoing links. Now let 𝑝 be
the starting vector 𝑝𝑡 = (1, 1), and compute a few iterations of the power method. Do you see that the
probability of the user being on the second page goes up to 1? The problem here is that we are dealing
with a reducible matrix.
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To prevent this problem, PageRank introduces another element: sometimes the user will get bored from
clicking, and will go to an arbitrary page (there are also provisions for pages with no outgoing links). If
we call 𝑠 the chance that the user will click on a link, then the chance of going to an arbitrary page is 1−𝑠.
Together, we now have the process

𝑝′ ← 𝑠𝑇𝑝 + (1 − 𝑠)𝑒,
that is, if 𝑝 is a vector of probabilities then 𝑝′ is a vector of probabilities that describes where the user is
after making one page transition, either by clicking on a link or by ‘teleporting’.

The PageRank vector is the stationary point of this process; you can think of it as the probability distri-
bution after the user has made infinitely many transitions. The PageRank vector satisfies

𝑝 = 𝑠𝑇𝑝 + (1 − 𝑠)𝑒 ⇔ (𝐼 − 𝑠𝑇 )𝑝 = (1 − 𝑠)𝑒.
Thus, we now have to wonder whether 𝐼 − 𝑠𝑇 has an inverse. If the inverse exists it satisfies

(𝐼 − 𝑠𝑇 )−1 = 𝐼 + 𝑠𝑇 + 𝑠2𝑇 2 + ⋯
It is not hard to see that the inverse exists: with the Gershgorin theorem (appendix 13.5) you can see that
the eigenvalues of 𝑇 satisfy |𝜆| ≤ 1. Now use that 𝑠 < 1, so the series of partial sums converges.

The above formula for the inverse also indicates a way to compute the PageRank vector 𝑝 by using a
series of matrix-vector multiplications.

Exercise 9.12. Write pseudo-code for computing the PageRank vector, given the matrix 𝑇 .
Show that you never need to compute the powers of 𝑇 explicitly. (This is an instance of
Horner’s rule).

In the case that 𝑠 = 1, meaning that we rule out teleportation, the PageRank vector satisfies 𝑝 = 𝑇𝑝, which
is again the problem of finding the Perron vector ; see appendix 13.4.

We find the Perron vector by a power iteration (section 13.3)

𝑝(𝑖+1) = 𝑇𝑝(𝑖).
This is a sparsematrix vector product, but unlike in the BVP case the sparsity is unlikely to have a structure
such as bandedness. Computationally, one probably has to use the same parallelism arguments as for a
dense matrix: the matrix has to be distributed two-dimensionally [152].

9.5 Large-scale computational graph theory

In the preceding sections you have seen that many graph algorithms have a computational structure that
makes thematrix-vector product their most important kernel. Sincemost graphs are of low degree relative
to the number of nodes, the product is a sparse matrix-vector product.

While the dense matrix-vector product relies on collectives (see section 6.2), the sparse case uses point-
to-point communication, that is, every processor sends to just a few neighbors, and receives from just a
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few. This makes sense for the type of sparse matrices that come from PDEs which have a clear structure,
as you saw in section 4.2.3. However, there are sparse matrices that are so random that you essentially
have to use dense techniques; see section 9.5.

In many cases we can then, as in section 6.5, make a one-dimensional distribution of the matrix, induced
by a distribution of the graph nodes: if a processor owns a graph node 𝑖, it owns all the edges 𝑖, 𝑗.
However, often the computation is very unbalanced. For instance, in the single-source shortest path algo-
rithm only the vertices along the front are active. For this reason, sometimes a distribution of edges rather
than vertices makes sense. For an even balancing of the load even random distributions can be used.

The parallelization of the Floyd-Warshall algorithm (section 9.1.2) proceeds along different lines. Here we
don’t compute a quantity per node, but a quantity that is a function of pairs of nodes, that is, a matrix-like
quantity. Thus, instead of distributing the nodes, we distribute the pair distances.

9.5.1 Distribution of nodes vs edges

Sometimes we need to go beyond a one-dimensional decomposition in dealing with sparse graphmatrices.
Let’s assume that we’re dealing with a graph that has a structure that is more or less random, for instance
in the sense that the chance of there being an edge is the same for any pair of vertices. Also assuming
that we have a large number of vertices and edges, every processor will then store a certain number of
vertices. The conclusion is then that the chance that any pair of processors needs to exchange a message
is the same, so the number of messages is 𝑂(𝑃). (Another way of visualizing this is to see that nonzeros
are randomly distributed through the matrix.) This does not give a scalable algorithm.

The way out is to treat this sparse matrix as a dense one, and invoke the arguments from section 6.2.3
to decide on a two-dimensional distribution of the matrix. (See [197] for an application to the BFS prob-
lem; they formulate their algorithm in graph terms, but the structure of the 2D matrix-vector product is
clearly recognizable.) The two-dimensional product algorithm only needs collectives in processor rows
and columns, so the number of processors involved is 𝑂(√𝑃).

9.5.2 Hyper-sparse data structures

With a two-dimensional distribution of sparse matrices, it is conceivable that some processes wind up
with matrices that have empty rows. Formally, a matrix is called hyper-sparse if the number of nonzeros
is (asymptotically) less than the dimension.

In this case, CRS format can be inefficient, and something called double-compressed storage can be used [24].
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Chapter 10

N-body problems

In chapter 4 we looked at continuous phenomena, such as the behaviour of a heated rod in the entire
interval [0, 1] over a certain time period. There are also applications where you may be interested in a
finite number of points. One such application is the study of collections of particles, possibly very big
particles such as planets or stars, under the influence of a force such as gravity or the electrical force.
(There can also be external forces, which we will ignore; also we assume there are no collisions, other-
wise we need to incorporate nearest-neighbor interactions.) This type of problems is known as N-body
problems; for an introduction see http://www.scholarpedia.org/article/N-body_simulations_
(gravitational).

Figure 10.1: Summing all forces on a par-
ticle.

A basic algorithm for this problem is easy enough:

• choose some small time interval,
• calculate the forces on each particle, given the loca-
tions of all the particles,

• move the position of each particle as if the force on it
stays constant throughout that interval.

For a small enough time interval this algorithm gives a reason-
able approximation to the truth.

The last step, updating the particle positions, is easy and com-
pletely parallel: the problem is in evaluating the forces. In a
naive way this calculation is simple enough, and even com-
pletely parallel:

for each particle 𝑖
for each particle 𝑗

let ̄𝑟𝑖𝑗 be the vector between 𝑖 and 𝑗;
then the force on 𝑖 because of 𝑗 is

𝑓𝑖𝑗 = − ̄𝑟𝑖𝑗 𝑚𝑖𝑚𝑗
|𝑟𝑖𝑗 |

(where 𝑚𝑖, 𝑚𝑗 are the masses or charges) and
𝑓𝑗𝑖 = −𝑓𝑖𝑗 .

The main objection to this algorithm is that it has quadratic computational complexity: for 𝑁 particles,
the number of operations is 𝑂(𝑁 2).
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Exercise 10.1. If we had𝑁 processors, the computations for one update stepwould take time𝑂(𝑁 ).
What is the communication complexity? Hint: is there a collective operations you can
use?

Several algorithms have been invented to get the sequential complexity down to 𝑂(𝑁 log𝑁) or even 𝑂(𝑁 ).
As might be expected, these are harder to implement than the naive algorithm. We will discuss a popular
method: the Barnes-Hut algorithm [8], which has 𝑂(𝑁 log𝑁) complexity.

10.1 The Barnes-Hut algorithm

The basic observation that leads to a reduction in complexity is the following. If you are calculating the
forces on two particles 𝑖1, 𝑖2 that are close together, coming from two particles 𝑗1, 𝑗2 that are also close
together, you can clump 𝑗1, 𝑗2 together into one particle, and use that for both 𝑖1, 𝑖2.
Next, the algorithm uses a recursive division of space, in two dimensions in quadrants and in three di-
mensions in octants; see figure 10.2.

Figure 10.2: Recursive subdivision of a domain in quadrants with levels indicated (left); actual subdivision
with one particle per box (right).

The algorithm is then as follows. First total mass and center of mass are computed for all cells on all levels:

for each level ℓ, from fine to coarse:
for each cell 𝑐 on level ℓ:

compute the total mass and center of mass
for cell 𝑐 by considering its children

if there are no particles in this cell,
set its mass to zero

Then the levels are used to compute the interaction with each particle:
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for each particle 𝑝:
for each cell 𝑐 on the top level

if 𝑐 is far enough away from 𝑝:
use the total mass and center of mass of 𝑐;

otherwise consider the children of 𝑐

Figure 10.3: Boxes with constant dis-
tance/diameter ratio.

The test on whether a cell is far enough away is typically im-
plemented as the ratio of its diameter to its distance being
small enough. This is sometimes referred to as the ‘cell open-
ing criterium’. In this manner, each particle interacts with a
number of concentric rings of cells, each next ring of double
width; see figure 10.3.

This algorithm is easy to realize if the cells are organized in a
tree. In the three-dimensional case, each cell has eight children,
so this is known as an octtree.

The computation of centres of masses has to be done each time
after the particles move. Updating can be less expensive than
computing from scratch. Also, it can happen that a particle
crosses a cell border, in which case the data structure needs to
be updated. In the worst case, a particle moves into a cell that
used to be empty.

10.2 The Fast Multipole Method

The Fast Multipole Method (FMM) computes an expression for
the potential at every point, not the force as does Barnes-Hut. FMM uses more information than the mass
and center of the particles in a box. This more complicated expansion is more accurate, but also more
expensive. In compensation, the FMM uses a fixed set of boxes to compute the potential, rather than a set
varying with the accuracy parameter theta, and location of the center of mass.

However, computationally the FMM is much like the Barnes-Hut method so we will discuss their imple-
mentation jointly.

10.3 Full computation

Despite the above methods for judicious approximation, there are also efforts at full calculation of the 𝑁 2
interactions; see for instance the NBODY6 code of Sverre Aarseth; see http://www.ast.cam.ac.uk/
~sverre/web/pages/home.htm. Such codes use high order integrators and adaptive time steps. Fast
implementation on the Grape computer exist; general parallelization is typically hard because of the need
for regular load balancing.
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10.4 Implementation

Octtree methods offer some challenges on high performance architectures. First of all, the problem is
irregular, and secondly, the irregularity dynamically changes. The second aspect is mostly a problem in
distributed memory, and it needs load rebalancing; see section 2.10. In this section we concentrated on the
force calculation in a single step.

10.4.1 Vectorization

The structure of a problem as in figure 10.2 is quite irregular. This is a problem for vectorization on the
small scale of SSE/AVX instructions and on the large scale of vector pipeline processors (see section 2.3.1
for an explanation of both). Program steps ‘for all children of a certain box do something’ will be of
irregular length, and data will possibly be not stored in a regular manner.

This problem can be alleviated by subdividing the grid even if this means having empty boxes. If the
bottom level is fully divided, there will always be eight (in three dimension) particles to operate on. Higher
levels can also be filled in, but this means an increasing number of empty boxes on the lower levels, so
there is a trade-off between increased work and increasing efficiency.

10.4.2 Shared memory implementation

Executed on a sequential architecture, this algorithm has complexity 𝑂(𝑁 log𝑁). It is clear that this al-
gorithm will also work on shared memory if each particle is turned into a task. Since not all cells contain
particles, tasks will have a different running time.

10.4.3 Distributed memory implementation

The above shared-memory version of the Barnes-Hut algorithm can not immediately be used in a dis-
tributed memory context, since each particle can in principle access information from any part of the
total data. It is possible to realize an implementation along these lines using a hashed octtree, but we will
not persue this.

We observe data access is more structured than it seems at first. Consider a particle 𝑝 and the cells on level ℓ
that it interacts with. Particles located close to 𝑝 will interact with the same cells, so we can rearrange
interaction by looking at cells on level ℓ and the other cells on the same level that they interact with.

This gives us the following algorithm [118]: the calculation of centres of mass become a calculation of the
force 𝑔(ℓ)𝑝 exerted by a particle 𝑝 on level ℓ:

for level ℓ from one above the finest to the coarsest:
for each cell 𝑐 on level ℓ

let 𝑔(ℓ)𝑐 be the combination of the 𝑔(ℓ+1)
𝑖 for all children 𝑖 of 𝑐

With this we compute the force on a cell:

for level ℓ from one below the coarses to the finest:
for each cell 𝑐 on level ℓ:
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let 𝑓 (ℓ)𝑐 be the sum of

1. the force 𝑓 (ℓ−1)𝑝 on the parent 𝑝 of 𝑐, and
2. the sums 𝑔(ℓ)

𝑖 for all 𝑖 on level ℓ that
satisfy the cell opening criterium

We see that on each level, each cell now only interacts with a small number of neighbors on that level. In
the first half of the algorithmwe go up the tree using only parent-child relations between cells. Presumably
this is fairly easy.

The second half of the algorithm uses more complicated data access. The cells 𝑖 in the second term are all
at some distance from the cell 𝑐 on which we are computing the force. In graph terms these cells can be
described as cousins: children of a sibling of 𝑐’s parent. If the opening criterium is made sharper, we use
second cousins: grandchildren of the sibling of 𝑐’s grandparent, et cetera.
Exercise 10.2. Argue that this force calculation operation has much in common, structurally,

with the sparse matrix-vector product.

In the shared memory case we already remarked that different subtrees take different time to process,
but, since we are likely to have more tasks than processor cores, this will all even out. With distributed
memory we lack the possibility to assign work to arbitrary processors, so we need to assign load carefully.
Space-Filling Curves (SFCs) can be used here to good effect (see section 2.10.5.2).

10.4.4 1.5D implementation of the full method

It is possible to make a straightforward parallel implementation of the full 𝑁 2 method by distributing the
particles, and let each particle evaluate the forces from every other particle.

Exercise 10.3. Since forces are symmetric, we can save a factor of two in work by letting par-
ticle 𝑝𝑖 only interact with particles 𝑝𝑗 with 𝑗 > 𝑖. In this scheme, an equal distribution of
data, e.g., particles, leads to an uneven distribution of work, e.g., interactions. How do
the particles need to be distributed to get an even load distribution?

Assuming we don’t care about the factor of two gain from using symmetry of forces, and using an even
distribution of the particles, this scheme has a more serious problem in that it asymptotically does not
scale.

The communication cost of this is

• 𝑂(𝑃) latency since messages need to be received from all processors.
• 𝑂(𝑁 ) bandwidth, since all particles need to be received.

If we however distribute the force calculations, rather than the particles, we come to different bounds;
see [53] and references cited therein.

With every processor computing the interactions in a block with sides 𝑁/√𝑃 , there is replication of par-
ticles and forces need to be collected. Thus, the cost is now

• 𝑂(log 𝑝) latency for the broadcast and reduction
• 𝑂(𝑁/√𝑃 ⋅ log 𝑃) bandwidth, since that is how much force data each processor contributes to the
final sum.

388 Introduction to High Performance Scientific Computing



10.4. Implementation

10.4.4.1 Problem description

We abstract the N-body problem as follows:

• We assume that there is a vector 𝑐(⋅) of the particle charges/masses and location information.
• To compute the location update, we need the pairwise interactions 𝐹(⋅, ⋅) based on storing tuples
𝐶𝑖𝑗 = ⟨𝑐𝑖, 𝑐𝑗⟩.

• The interactions are then summed to a force vector 𝑓 (⋅).
In the Integrative Model for Parallelism (IMP) model, the algorithm is sufficiently described if we know
the respective data distributions; we are not immediately concerned with the local computations.

10.4.4.2 Particle distribution

An implementation based on particle distribution takes as its starting point the particle vector 𝑐 distributed
as 𝑐(𝑢), and directly computes the force vector 𝑓 (𝑢) on the same distribution.We describe the computation
as a sequence of three kernels, two of data movement and one of local computation1:

⎧⎪⎪
⎨⎪⎪
⎩

{𝛼 ∶ 𝑐(𝑢)} initial distribution for 𝑐 is 𝑢
𝐶(𝑢, ∗) = 𝑐(𝑢) ⋅× 𝑐(∗) replicate 𝑐 on each processor

local computation of 𝐹(𝑢, ∗) from 𝐶(𝑢, ∗)
𝑓 (𝑢) = ∑2 𝐹(𝑢, ∗) local reduction of partial forces

particle position update

(10.1)

The final kernel is a reduction with identical 𝛼 and 𝛽-distribution, so it does not involve data motion. The
local computation kernel also has not data motion. That leaves the gathering of 𝐶(𝑢, ∗) from the initial
distribution 𝑐(𝑢). Absent any further information on the distribution 𝑢 this is an allgather of 𝑁 elements,
at a cost of 𝛼 log 𝑝 + 𝛽𝑁 . In particular, the communication cost does not go down with 𝑝.
With a suitable programming system based on distributions, the system of equations (10.1) can be trans-
lated into code.

10.4.4.3 Work distribution

The particle distribution implementation used a one-dimensional distribution 𝐹(𝑢, ∗) for the forces con-
formally with the particle distribution. Since 𝐹 is a two-dimensional object, it is also possible to use a
two-dimensional distribution. We will now explore this option, which was earlier described in [53]; our
purpose here is to show how this strategy can be implemented and analyzed in the IMP framework.
Rather than expressing the algorithm as distributed computation and replicated data, we use a distributed
temporary, and we derive the replication scheme as collectives on subcommunicators.

For a two-dimensional distribution of 𝐹 weneed (𝑁/𝑏)×(𝑁/𝑏) processorswhere 𝑏 is a blocksize parameter.
For ease of exposition we use 𝑏 = 1, giving a number of processors 𝑃 = 𝑁 2.

We will now go through the necessary reasoning. The full algorithm in close-to-implementable form is
given in figure 10.4. For simplicity we use the identify distribution 𝐼 ∶ 𝑝 ↦ {𝑝}.

1. In the full IMP theory [57] the first two kernels can be collapsed.
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{𝛼 ∶ 𝐶(𝐷∶ < 𝐼 , 𝐼 >)} initial distribution on the processor diagonal
𝐶(𝐼 , 𝐼 ) = 𝐶(𝐼 , 𝑝) + 𝐶(𝑞, 𝐼 ) row and column broadcast of the processor diagonal
𝐹(𝐼 , 𝐼 ) ← 𝐶(𝐼 , 𝐼 ) local interaction calculation
𝑓 (𝐷∶ < 𝐼 , 𝐼 >) = ∑2 𝐹(𝐼 , 𝐷 ∶ ∗) summation from row replication on the diagonal

(10.2)

Figure 10.4: IMP realization of the 1.5D N-body problem.

Initial store on the diagonal of the processor grid We first con-
sider the gathering of the tuples 𝐶𝑖𝑗 = ⟨𝑐𝑖, 𝑐𝑗⟩. Initially, we decide to let
the 𝑐 vector be stored on the diagonal of the processor grid; in other
words, for all 𝑝, processor ⟨𝑝, 𝑝⟩ contains 𝐶𝑝𝑝 , and the content of all
other processors is undefined.

To express this formally, we let 𝐷 be the diagonal {⟨𝑝, 𝑝⟩∶ 𝑝 ∈ 𝑃}.
Using the mechanism of partially defined distributions the initial 𝛼-
distribution is then

𝐶(𝐷∶ < 𝐼 , 𝐼 >) ≡ 𝐷 ∋ ⟨𝑝, 𝑞⟩ ↦ 𝐶(𝐼 (𝑝), 𝐼 (𝑞)) = 𝐶𝑝𝑞 . (10.3)

Replication for force computation The local force computation
𝑓𝑝𝑞 = 𝑓 (𝐶𝑝𝑞) needs for each processor ⟨𝑝, 𝑞⟩ the quantity 𝐶𝑝𝑞 , so we
need a 𝛽-distribution of 𝐶(𝐼 , 𝐼 ). The key to our story is the realization
that

𝐶𝑝𝑞 = 𝐶𝑝𝑝 + 𝐶𝑞𝑞

so that

𝐶(𝐼 , 𝐼 ) = 𝐶(𝐼 , 𝑝) + 𝐶(𝑞, 𝐼 )
(where 𝑝 stands for the distribution that maps each processor to the index value 𝑝 and similarly for 𝑞.)
To find the transformation from 𝛼 to 𝛽-distribution we consider the transformation of the expression
𝐶(𝐷∶ ⟨𝐼 , 𝐼 ⟩). In general, any set 𝐷 can be written as a mapping from the first coordinate to sets of values
of the second:

𝐷 ≡ 𝑝 ↦ 𝐷𝑝 where 𝐷𝑝 = {𝑞∶ ⟨𝑝, 𝑞⟩ ∈ 𝐷}.
In our particular case of the diagonal we have

𝐷 ≡ 𝑝 ↦ {𝑝}.
With this we write

𝐶(𝐷∶ ⟨𝐼 , 𝐼 ⟩) = 𝐶(𝐼 , 𝐷𝑝 ∶ 𝐼 ) = 𝐶(𝐼 , {𝑝}∶ 𝑝). (10.4)
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Note that equation (10.4) is still the 𝛼-distribution. The 𝛽-distribution is 𝐶(𝐼 , 𝑝), and it is an exercise in
pattern matching to see that this is attained by a broadcast in each row, which carries a cost of

𝛼 log√𝑝 + 𝛽𝑁/√𝑃.

Likewise, 𝐶(𝑞, 𝐼 ) is found from the 𝛼-distribution by column broadcasts. We conclude that this variant
does have a communication cost that goes down proportionally with the number of processors.

Local interaction calculation The calculation of 𝐹(𝐼 , 𝐼 ) ← 𝐶(𝐼 , 𝐼 ) has identical 𝛼 and 𝛽 distributions,
so it is trivialy parallel.

Summing of the forces We have to extend the force vector 𝑓 (⋅) to
our two-dimensional processor grid as 𝑓 (⋅, ⋅). However, conforming to
the initial particle distribution on the diagonal, we only sum on the
diagonal. The instruction

𝑓 (𝐷∶ < 𝐼 , 𝐼 >) = ∑
2

𝐹(𝐼 , 𝐷 ∶ ∗)

has a 𝛽-distribution of 𝐼 , 𝐷 ∶ ∗, which is formed from the 𝛼-distribution
of 𝐼 , 𝐼 by gathering in the rows.
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Chapter 11

Monte Carlo Methods

Monte Carlo simulation is a broad term for methods that use random numbers and statistical sampling to
solve problems, rather than exact modeling. From the nature of this sampling, the result will have some
uncertainty, but the statistical ‘law of large numbers’ will ensure that the uncertainty goes down as the
number of samples grows.

An important tool for statistical sampling is a random number generator. See appendix 18 for random
number generation.

11.1 Motivation
Let’s start with a simple example: measuring an area, for instance, 𝜋 is the area of a circle inscribed in a
square with sides 2. If you picked a random point in the square, the chance of it falling in the circle is 𝜋/4,
so you could estimate this ratio by taking many random points (𝑥, 𝑦) and seeing in what proportion their
length √𝑥2 + 𝑦2 is less than 1.

You could even do this as a physical experiment: suppose you have a pond of an irregular shape in your
backyard, and that the yard itself is rectangular with known dimensions. If you would now throw pebbles
into your yard so that they are equally likely to land at any given spot, then the ratio of pebbles falling in
the pond to those falling outside equals the ratio of the areas.

Less fanciful and more mathematically, we need to formalize the idea of falling inside or outside the shape
you are measuring. Therefore, let Ω ∈ [0, 1]2 be the shape, and let a function 𝑓 ( ̄𝑥) describe the boundary
of Ω, that is

{𝑓 ( ̄𝑥) < 0 𝑥 ∉ Ω
𝑓 ( ̄𝑥) > 0 𝑥 ∈ Ω

Now take random points ̄𝑥0, ̄𝑥1, ̄𝑥2 ∈ [0, 1]2, then we can estimate the area of Ω by counting how often
𝑓 ( ̄𝑥𝑖) is positive or negative.

We can extend this idea to integration. The average value of a function on an interval (𝑎, 𝑏) is defined as

⟨𝑓 ⟩ = 1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝑓 (𝑥)𝑑𝑥
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On the other hand, we can also estimate the average as

⟨𝑓 ⟩ ≈ 1
𝑁

𝑛
∑
𝑖=1

𝑓 (𝑥𝑖)

if the points 𝑥𝑖 are reasonably distributed and the function 𝑓 is not too wild. This leads us to

∫
𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎) 1𝑁

𝑛
∑
𝑖=1

𝑓 (𝑥𝑖)

Statistical theory, that we will not go into, tells us that the uncertainty 𝜎𝐼 in the integral is related to the
standard deviation 𝜎𝑓 by

𝜎𝐼 ∼ 1
√𝑁

𝜎𝑓

for normal distributions.

11.1.1 What is the attraction?

So far, Monte Carlo integration does not look much different from classical integration by Riemann sums.
The difference appears when we go to higher dimensions. In that case, for classical integration we would
need 𝑁 points in each dimension, leading to 𝑁 𝑑 points in 𝑑 dimensions. In the Monte Carlo method, on
the other hand, the points are taken at random from the 𝑑-dimensional space, and a much lower number
of points suffices.

Computationally, Monte Carlo methods are attractive since all function evaluations can be performed in
parallel.

The statistical law that underlies this is as follows: if 𝑁 independent observations are made of a quantity
with standard deviation 𝜎 , then the standard deviation of the mean is 𝜎/√𝑁 . This means that more ob-
servations will lead to more accuracy; what makes Monte Carlo methods interesting is that this gain in
accuracy is not related to dimensionality of the original problem.

Monte Carlo techniques are of course natural candidatates for simulating phenomena that are statistical
in nature, such as radioactive decay, or Brownian motion. Other problems where Monte Carlo simulation
is attractive are outside the realm of scientific computing. For instance, the Black-Scholes model for stock
option pricing [15] uses Monte Carlo simulation.

Some problems that you have seen before, such as solving a linear system of equations, can be tackled with
Monte Carlo techniques. However, this is not a typical application. Belowwe will discuss two applications
where exact methods would take far too much time to compute and where statistical sampling can quickly
give a reasonably accurate answer.
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11. Monte Carlo Methods

11.2 Examples

11.2.1 Monte Carlo simulation of the Ising model

The Ising model (for an introduction, see [34]) was originally proposed to model ferromagnetism. Mag-
netism is the result of atoms aligning their ‘spin’ direction: let’s say spin can only be ‘up’ or ‘down’, then
a material has magnetism if more atoms have spin up than down, or the other way around. The atoms are
said to be in a structure called a ‘lattice’.

Now imagine heating up a material, which loosens up the atoms. If an external field is applied to the
material, the atoms will start aligning with the field, and if the field is removed the magnetism disappears
again. However, below a certain critical temperature the material will retain its magnetism. We will use
Monte Carlo simulation to find the stable configurations that remain.

Let’s say the lattice Λ has 𝑁 atoms, and we denote a configuration of atoms as 𝜎 = (𝜎1, … , 𝜎𝑁 )where each
𝜎𝑖 = ±1. The energy of a lattice is modeled as

𝐻 = 𝐻(𝜎) = −𝐽 ∑
𝑖

𝜎𝑖 − 𝐸∑
𝑖𝑗

𝜎𝑖𝜎𝑗 .

The first termmodels the interaction of individual spins 𝜎𝑖 with an external field of strength 𝐽 . The second
term, which sums over nearest neighbor pairs, models alignment of atom pairs: the product 𝜎𝑖𝜎𝑗 is positive
if the atoms have identical spin, and negative if opposite.

In statistical mechanics, the probability of a configuration is

𝑃(𝜎) = exp(−𝐻(𝜎))/𝑍
where the ‘partitioning function’ 𝑍 is defined as

𝑍 = ∑
𝜎

exp(𝐻(𝜎))

where the sum runs over all 2𝑁 configurations.

A configuration is stable if its energy does not decrease under small perturbations. To explore this, we
iterate over the lattice, exploring whether altering the spin of atoms lowers the energy. We introduce an
element of chance to prevent artificial solutions. (This is the Metropolis algorithm [147].)

for fixed number of iterations do
for each atom 𝑖 do

calculate the change Δ𝐸 from changing the sign of 𝜎𝑖
if Δ𝐸 < or exp(−Δ𝐸) greater than some random number then

accept the change

This algorithm can be parallelized, if we notice the similarity with the structure of the sparse matrix-
vector product. In that algorithm too we compute a local quantity by combining inputs from a few nearest
neighbors. This means we can partitioning the lattice, and compute the local updates after each processor
collects a ghost region.
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Having each processor iterate over local points in the lattice corresponds to a particular global ordering
of the lattice; to make the parallel computation equivalent to a sequential one we also need a parallel
random generator (section 18.3).
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Chapter 12

Machine learning

Machine Learning (ML) is a collective name for a number of techniques that approach problems we might
consider ‘intelligent’, such as image recognition. In the abstract, such problems aremappings from a vector
space of features, such as pixel values in an image, to another vector space of outcomes. In the case of
image recognition of letters, this final space could be 26-dimensional, and a maximum value in the second
component would indicate that a ‘B’ was recognized.

The essential characteristic of ML techniques is that this mapping is described by a – usually large –
number of internal parameters, and that these parameters are gradually refined. The learning aspect here
is that refining the parameters happens by comparing an input to both its predicted output based on
current parameters, and the intended output.

12.1 Neural networks

Themost popular form of ML these days is Deep Learning (DL), or neural networks. A neural net, or a deep
learning network, is a function that computes a numerical output, given a (typically multi-dimensional)
input point. Assuming that this output is normalized to the interval [0, 1], we can use a neural net as a
classification tool by introducing a threshold on the output.

Why ‘neural’?

A neuron, in a living body, is a cell that ‘fires’, that is, gives off a voltage spike, if it receives certain inputs.
In ML we abstract this to a perceptron: a function that outputs a value depending on certain inputs. To be
specific, the output value is often a linear function of the inputs, with the result limited to the range (0, 1).

12.1.1 Single datapoint

In its simplest form we have an input, characterized by a vector of feature s ̄𝑥 , and a scalar output 𝑦 . We
can compute 𝑦 as a linear function of ̄𝑥 by using a vector of weights of the same size, and a scalar bias 𝑏:

𝑦 = ̄𝑤 ̄𝑥 + 𝑏.
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12.1. Neural networks

12.1.2 Activation functions

To have some scale invariance, we introduce a function 𝜎 known as the activation function that maps
ℝ → (0, 1), and we actually compute the scalar output 𝑦 as:

ℝ ∋ 𝑦 = 𝜎( ̄𝑤 𝑡 ̄𝑥 + 𝑏). (12.1)

One popular choice for a sigmoid function is

𝜎(𝑧) = 1
1 + 𝑒−𝑧 .

This has the interesting property that

𝜎 ′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))
so computing both the function value and the derivative is not much more expensive than computing
only the function value.

For vector-valued outputs we apply the sigmoid function in a pointwise manner:

// funcs.cpp
template <typename V>
void sigmoid_io(const V &m, V &a) {

a.vals.assign(m.vals.begin(),m.vals.end());
for (int i = 0; i < m.r * m.c; i++) {

// a.vals[i]*=(a.vals[i]>0); // values will be 0 if negative, and equal to themselves
if positive

a.vals[i] = 1 / (1 + exp(-a.vals[i]));
}

}

Other activation functions are 𝑦 = tanh(𝑥) or ‘ReLU’ (Rectified Linear Unit)

𝑓 (𝑥) = max(0, 𝑥).
In other places (such as the final layer of a DL network) a softmax function may be more appropriate.

12.1.3 Multi-dimensional output

It is rare that a single layer, defined by ̄𝑤 , �̄� can achieve all that we ask of a neural net. Typically we use
the output of one layer as the input for a next layer. This means that instead of a scalar 𝑦 we compute a
multi-dimensional vector ̄𝑦 .
Now we have weights and a bias for each component of the output, so

ℝ𝑛 ∋ ̄𝑦 = 𝜎(𝑊 ̄𝑥 + �̄�)
where 𝑊 is now a matrix.

A few observations:
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• As indicated above, the output vector typically has fewer components than the input, so the
matrix is not square, in particular not invertible.

• The sigmoid function makes the total mapping non-linear.
• Neural nets typically have multiple layers, each of which is a mapping of the form 𝑥 → 𝑦 as
above.

12.1.4 Convolutions

The above discussion of applying weights considered the inputs as a set of features without further struc-
ture. However, in applications such as image recognition, where the input vector is an image, there is a
structure to be acknowledged. Linearizing the input vector puts pixels close together in the input vector
if they are close horizontally, but not vertically.

Thuswe aremotivated to find aweightsmatrix that reflects this locality.We do this by introducing kernels:
a small ‘stencil’ that is applied at various points of the image. (See section 4.2.4 for a discussion of stencils
in the context of PDEs.) Such a kernel is typically a small square matrix, and applying it is done by taking
the inner product of the stencil values and the image values. (This is an inexact use of the term convolution
from signal processing.)

Examples: https://aishack.in/tutorials/image-convolution-examples/.

12.2 Deep learning networks

We will now present a full neural network. This presentation follows [103].

Use a network with 𝐿 ≥ 1 layers, where layer ℓ = 1 is the input layer, and layer ℓ = 𝐿 is the output layer.

For ℓ = 1, … , 𝐿, layer ℓ compute

𝑧(ℓ) = 𝑊 (ℓ)𝑎(ℓ) + 𝑏(ℓ)
𝑦 (ℓ) = 𝜎(𝑦 (ℓ)) (12.2)

where 𝑎(1) is the input and 𝑧(𝐿+1) is the final output.

We write this compactly as

𝑦 (𝐿) = 𝑁{𝑊 (ℓ)}ℓ,{𝑏(ℓ)}𝑒 𝑙 𝑙(𝑎(1)) (12.3)

where we will usually omit the dependence of the net on the 𝑊 (ℓ), 𝑏(ℓ) sets.
// net.cpp
void Net::feedForward(const VectorBatch &input) {

this->layers.front().forward(input); // Forwarding the input

for (unsigned i = 1; i < layers.size(); i++) {
this->layers.at(i).forward(this->layers.at(i - 1).activated_batch);

}
}
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12.2. Deep learning networks

// layer.cpp
void Layer::forward(const VectorBatch &prevVals) {

VectorBatch output( prevVals.r, weights.c, 0 );
prevVals.v2mp( weights, output );

output.addh(biases); // Add the bias
activated_batch = output;
apply_activation<VectorBatch>.at(activation)(output, activated_batch);

}

12.2.1 Classification

In the above description both the input 𝑥 and output 𝑦 are vector-valued. There are also cases where a
different type of output is desired. For instance, suppose we want to characterize bitmap images of digits;
in that case the output should be an integer 0⋯ 9.
We accomodate this by letting the output 𝑦 be in ℝ10, and we say that the network recognizes the digit 5
if 𝑦5 is sufficiently larger than the other output components. In this manner we keep the whole story still
real-valued.

12.2.2 Error minimization

Often we have data points {𝑥𝑖}𝑖=1,𝑁 with known outputs 𝑦𝑖, and we want to make the network predict
reproduce this mapping as well as possible. Formally, we seek to minimize the cost, or error:

𝐶 = 1
𝑁 𝐿(𝑁 (𝑥𝑖), 𝑦𝑖)

over all choices {𝑊 }, {𝑏}. (Usually we do not spell out explicitly that this cost is a function of all𝑊 [ℓ] weight
matrices and 𝑏[ℓ] biases.)

float Net::calculateLoss(Dataset &testSplit) {
testSplit.stack();
feedForward(testSplit.dataBatch);
const VectorBatch &result = output_mat();

float loss = 0.0;
for (int vec=0; vec<result.batch_size(); vec++) { // iterate over all items

const auto& one_result = result.get_vector(vec);
const auto& one_label = testSplit.labelBatch.get_vector(vec);
assert( one_result.size()==one_label.size() );
for (int i=0; i<one_result.size(); i++) // Calculate loss of result

loss += lossFunction( one_label[i], one_result[i] );
}
loss = -loss / (float) result.batch_size();

return loss;
}
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Minimizing the cost means to choose weights {𝑊 (ℓ)}ℓ and biases {𝑏(ℓ)}ℓ such that for each 𝑥 :
[{𝑊 (ℓ)}ℓ, {𝑏(ℓ)}ℓ] = argmin

{𝑊 },{𝑏}
𝐿(𝑁{𝑊 },{𝑏}(𝑥), 𝑦) (12.4)

where 𝐿(𝑁 (𝑥), 𝑦) is a loss function describing the distance between the computed output 𝑁(𝑥) and the
intended output 𝑦 .
We find this minimum using gradient descent:

𝑤 ← 𝑤 + Δ𝑤, 𝑏 ← 𝑏 + Δ𝑏
where

Δ𝑊 = 𝜕𝐿
𝜕𝑊 (ℓ)

𝑖𝑗
which is a complicated expression that we will now give without derivation.

12.2.3 Coefficients computation

We are interested in partial derivatives of the cost wrt the various weights, biases, and computed quanti-
ties. For this it’s convenient to introduce a short-hand:

𝛿 [ℓ]𝑖 = 𝜕𝐶
𝜕𝑧[ℓ]𝑖

for 1 ≤ 𝑖 ≤ 𝑛ℓ and 1 ≤ ℓ < 𝐿. (12.5)

Now applying the chain rule (for full derivation see the paper quoted above) we get, using 𝑥 ∘ 𝑦 for the
pointwise (or Hadamard) vector-vector product {𝑥𝑖𝑦𝑖}:

• at the last level:

𝛿 [𝐿−1] = 𝜎 ′(𝑧[𝐿−1]) ∘ (𝑎[𝐿] − 𝑦)
• recursively for the earlier levels:

𝛿 [ℓ] = 𝜎 ′(𝑧[ℓ]) ∘ (𝑊 [ℓ+1]𝑡 𝛿 [ℓ+1])
• sensitivity wrt the biases:

𝜕𝐶
𝜕𝑏[ℓ]𝑖

= 𝛿 [ℓ]𝑖

• sensitivity wrt the weights:

𝜕𝐶
𝜕𝑤 [ℓ]

𝑖𝑘
= 𝛿 [ℓ]𝑖 𝑎[ℓ−1]𝑘

Using the special form

𝜎(𝑥) = 1
1 + 𝑒−𝑥

gives

𝜎 ′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)).
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Input layer ℓ = 1 starts with:
𝑎(ℓ) = 𝑥 network input 𝑛𝑒𝑙𝑙 × 𝑏

For layers ℓ = 1, … , 𝐿
𝑎(ℓ) layer input 𝑛ℓ × 𝑏
𝑊 (ℓ) weights 𝑛ℓ+1 × 𝑛ℓ
𝑏(ℓ) biases 𝑛ℓ+1 × 𝑏
𝑧(ℓ) ← 𝑊 (ℓ)𝑎(ℓ) + 𝑏(ℓ) biased product 𝑛ℓ+1 × 𝑏
𝑎(ℓ+1) = 𝑦 (ℓ) ← 𝜎(𝑧(ℓ)) activated product 𝑛ℓ+1 × 𝑏

The final output:
𝑦 = 𝑎(𝐿+1) = 𝑧(𝐿) 𝑛𝐿+1 × 𝑏

For layers ℓ = 𝐿, 𝐿 − 1, … , 1
𝐷(ℓ+1) ← diag(𝜎 ′(𝑧(ℓ))) 𝑛ℓ+1 × 𝑛ℓ+1
𝛿 (ℓ) ← {𝐷

𝐿+1(𝑎𝐿+1 − 𝑦)
𝐷(ℓ+1)𝑊 (ℓ+1)𝑡𝛿 (ℓ+1) ℓ < 𝐿 𝑛ℓ+1 × 𝑏

Δ𝑊 (ℓ) ← 𝛿 (ℓ)𝑎(ℓ−1)𝑡 weights update 𝑛ℓ+1 × 𝑛ℓ
𝑤 (ℓ) ← 𝑤 (ℓ) − Δ𝑊 (ℓ)
Δ𝑏(ℓ) ≡ 𝛿 (ℓ) bias update 𝑛ℓ+1 × 𝑏

(12.6)

Figure 12.1: Deep Learning forward/backward passes.

12.2.4 Algorithm

We now present the full algorithm in figure 12.1. Our network has layers ℓ = 1, … , 𝐿, where the parameter
𝑛ℓ denotes the input size of layer ℓ.
Layer 1 has input 𝑥 , and layer 𝐿 has output 𝑦 . Anticipating the use of minibatches, we let 𝑥, 𝑦 denote a
group of inputs/output of size 𝑏, so their sizes are 𝑛1 × 𝑏 and 𝑛𝐿+1 × 𝑏 respectively.

12.3 Computational aspects
In this section we will discuss high-performance computing aspects of DL. In a scalar sense, we argue for
the the presence of the matrix-matrix product, which can be executed at high efficiency.

We will also discuss parallelism, focusing on
• Data parallelism, where the basic strategy is to split up the dataset;
• Model parallelism, where the basic strategy is to split up the model parameters; and
• Pipelining, where instructions can be executed in other orderings than in the naive model.

12.3.1 Weight matrix product

Both in applying the net, the forward pass, and in learning, the backward pass, we perform matrix times
vector products with theweightsmatrix. This operation does not havemuch cache reuse, andwill therefore
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not have high performance; section 1.8.13.

On the other hand, if we bundle a number of datapoints – this is sometimes called a mini-batch – and
operate on them jointly, our basic operation becomes the matrix times matrix product, which is capable
of much higher performance; section 1.7.1.2.

Figure 12.2: Shapes of arrays in a single layer.

We picture this in figure 12.2:

• the input batch and output batch consist of the same number of vectors;
• the weight matrix 𝑊 has a number of rows equal to the output size, and a number of columns
equal to the input size.

This importance of the gemm kernel (sections 1.7.1 and 6.4.1) has led people to develop dedicated hardware
for it.

Another approach would be to use a special form for the weights matrix. In [136] approximation by a
Toeplitz matrix is investigated. This has both advantages in space savings, and in that the product can be
done through an FFT.

12.3.2 Parallelism in the weight matrix product

We can now consider the efficient computation of 𝑁(𝑥). We already remarked that matrix-matrix multi-
plication is an important kernel, but apart from that we can use parallel processing. Figure 12.3 gives two
parallelization strategies.

In the first one, batches are divided over processes (or equivalently, multiple processes are working on
independent batches simultaneously); We refer to this as data parallelism.

Exercise 12.1. Consider this scenario in a shared memory context. In this code:
for 𝑏 = 1, … , batchsize

for 𝑖 = 1, … , outsize
𝑦𝑖,𝑏 ← ∑𝑗 𝑊𝑖,𝑗 ⋅ 𝑥𝑗,𝑏
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Figure 12.3: Partitioning strategies for parallel layer evaluation.

assume that each thread computes part of the 1, … , batchsize range.
Translate this to your favorite programming language. Do you store the input/output
vectors by rows or columns? Why? What are the implications of either choice?

Exercise 12.2. Now consider the data parallelism in a distributed memory context, with each
process working on a slice (block column) of the batches. Do you see an immediate
problem?

There is a second strategy, referred to as model parallelism, where the model parameters, that is, the
weights and biases, are distributed. As you can see in figure 12.3, this immediately implies that output
vectors of the layer are computed distributely.

Exercise 12.3. Outline the algorithm of this second partitioning in a distributed memory con-
text.

The choice between these strategies depends on whether the model is large, and the weight matrices need
to be split up, or whether the number of inputs is large. Of course, a combination of these can also bemade,
where both the model and batches are distributed.

12.3.3 Weights update

The calculation of the weights update

Δ𝑊 (ℓ) ← 𝛿 (ℓ)𝑎(ℓ−1)𝑡

is an outer product of rank 𝑏. It takes two vectors, and computes a low-rank matrix from them.

Exercise 12.4. Discuss the amount of (potential) data reuse in this operation, depending on the
relation between 𝑛ℓ and 𝑏. Assume 𝑛ℓ+1 ≈ 𝑛ℓ for simplicity.

Exercise 12.5. Discuss the structure of the data movement involved, in both of the partitioning
strategies of figure 12.3.

Apart from these aspects, this operation becomes even more interesting when we consider processing
mini-batches in parallel. In that case every batch independently computes an update, and we need to
average them. Under the assumption that each process compute a full Δ𝑊 , this becomes an all-reduce.
This application of ‘HPC techniques’ was developed into the Horovod software [75, 171, 108]. In one
example, considerable speedup was shown on a configuration involving 40 GPUs.

Another option would be delaying updates, or performing them asynchronously.
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Exercise 12.6. Discuss implementing delayed or asynchronous updates in MPI.

12.3.4 Pipelining

A final type of parallelism can be achieved by applying pipelining over the layers. Sketch how this can
improve the efficiency of the training stage.

12.3.5 Convolutions

Applying a convolution is equivalent to multiplying by a Toeplitz matrix. This has a lower complexity
than a fully general matrix-matrix multiplication.

12.3.6 Sparse matrices

The weights matrix can be sparsified by ignoring small entries. This makes the sparse matrix times dense
matrix product the dominant operation [70].

12.3.7 Hardware support

From the above, we conclude the importance of the gemm computational kernel. Dedicating a regular CPU
exclusively to this purpose is a considerable waste of silicon and power. At the very least, using GPUs is
an energy-efficient solution.

However, even more efficiency can be attained by using special purpose hardware. Here is an overview:
https://blog.inten.to/hardware-for-deep-learning-part-4-asic-96a542fe6a81 In a way,
these special purpose processors are a re-incarnation of systolic arrays.

12.3.8 Reduced precision

See section 3.8.5.2.

12.4 Stuff

Universal Approximation Theorem
Let 𝜑(⋅) be a nonconstant,bounded, and monotonically-increasing continuous func-

tion. Let 𝐼𝑚 denote the 𝑚-dimensional unit hypercube [0, 1]𝑚. The space of continuous
functions on 𝐼𝑚 is denoted by 𝐶(𝐼𝑚). Then, given any function 𝑓 ∈ 𝐶(𝐼𝑚) and 𝜀 > 0, there
exists an integer 𝑁 , real constants 𝑣𝑖, 𝑏𝑖 ∈ ℝ and real vectors 𝑤𝑖 ∈ ℝ𝑚, where 𝑖 = 1, ⋯ , 𝑁 ,
such that we may define:

𝐹(𝑥) =
𝑁
∑
𝑖=1

𝑣𝑖𝜑 (𝑤𝑇𝑖 𝑥 + 𝑏𝑖)
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as an approximate realization of the function 𝑓 where 𝑓 is independent of 𝜑; that is,

|𝐹 (𝑥) − 𝑓 (𝑥)| < 𝜀

for all 𝑥 ∈ 𝐼𝑚. In other words, functions of the form 𝐹(𝑥) are dense in 𝐶(𝐼𝑚).
Can a NN approximate multiplication?
https://stats.stackexchange.com/questions/217703/can-deep-neural-network-approximate-multiplication-function-without-normalizatio
Traditional neural network consists of linear maps and Lipschitiz activation func-

tion. As a composition of Lischitz continuous functions, neural network is also Lipschitz
continuous, but multiplication is not Lipschitz continuous. This means that neural net-
work cannot approximate multiplication when one of the x or y goes too large.
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PART III

APPENDICES



This course requires no great mathematical sophistication. Mostly it assumes that you know the basics of
linear algebra: what are matrices and vectors, and the most common operations on them.

In the following appendices we will cover some less common bits of theory that have been moved out of
the main storyline of the preceeding chapters.
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Chapter 13

Linear algebra

In this course it is assumed that you know what a matrix and a vector are, simple algorithms such as how
to multiply them, and some properties such as invertibility of a matrix. This appendix introduces some
concepts and theorems that are not typically part of a first course in linear algebra.

13.1 Norms
A norm is a way to generalize the concept of absolute value to multi-dimensional objects such as vectors
and matrices. There are many ways of defining a norm, and there is theory of how different norms relate.
Here we only give the basic concepts.

13.1.1 Vector norms

A norm is any function 𝑛(⋅) on a vector space 𝑉 with the following properties:

• 𝑛(𝑥) ≥ 0 for all 𝑥 ∈ 𝑉 and 𝑛(𝑥) = 0 only for 𝑥 = 0,
• 𝑛(𝜆𝑥) = |𝜆|𝑛(𝑥) for all 𝑥 ∈ 𝑉 and 𝜆 ∈ ℝ.
• 𝑛(𝑥 + 𝑦) ≤ 𝑛(𝑥) + 𝑛(𝑦)

For any 𝑝 ≥ 1, the following defines a vector norm:

|𝑥|𝑝 = 𝑝
√
∑
𝑖

|𝑥𝑖|𝑝 .

Common norms are the 1-norm, 2-norm, and infinity norm:

• The 1-norm ‖ ⋅ ‖1 is the sum of absolute values:

‖𝑥‖1 = ∑|𝑥𝑖|.
• The 2-norm ‖ ⋅ ‖2 is the root of the sum of squares:

‖𝑥‖2 = √∑𝑥2.
• The infinity-norm ‖ ⋅ ‖∞ norm is defined as lim𝑝→∞ ‖ ⋅ ‖𝑝 , and it is not hard to see that this equals

‖𝑥‖∞ = max𝑖 |𝑥𝑖|.
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13. Linear algebra

13.1.2 Matrix norms

By considering a matrix of size 𝑛 as a vector of length 𝑛2, we can define the Frobenius matrix norm:

‖𝐴‖𝐹 =
√
∑
𝑖,𝑗

|𝑎𝑖𝑗 |2.

However, we will mostly look at associated matrix norms:

‖𝐴‖𝑝 = sup
‖𝑥‖𝑝=1

‖𝐴𝑥‖𝑝 = sup
𝑥

‖𝐴𝑥‖𝑝
‖𝑥‖𝑝

.

From their definition, it then follows that

‖𝐴𝑥‖ ≤ ‖𝐴‖‖𝑥‖
for associated norms.

The following are easy to derive:

• ‖𝐴‖1 = max𝑗 ∑𝑖 |𝑎𝑖𝑗 |, the maximum column-absolute sum;
• ‖𝐴‖∞ = max𝑖 ∑𝑗 |𝑎𝑖𝑗 |, the maximum row-absolute sum.

By observing that ‖𝐴‖2 = sup‖𝑥‖2=1 𝑥 𝑡𝐴𝑡𝐴𝑥 , it is not hard to derive that ‖𝐴‖2 is the maximal singular value
of 𝐴, which is the root of the maximal eigenvalue of 𝐴𝑡𝐴, which is the largest eigenvalue of 𝐴 is 𝐴 is
symmetric.

The matrix condition number is defined as

𝜅(𝐴) = ‖𝐴‖ ‖𝐴−1‖.
In the symmetric case, and using the 2-norm, this is the ratio between the largest and smallest eigenvalue;
in general, it is the ratio between the largest and smallest singular value.

13.2 Gram-Schmidt orthogonalization
The Gram-Schmidt (GS) algorithm takes a series of vectors and inductively orthogonalizes them. This
can be used to turn an arbitrary basis of a vector space into an orthogonal basis; it can also be viewed as
transforming a matrix 𝐴 into one with orthogonal columns. If 𝑄 has orthogonal columns, 𝑄 𝑡𝑄 is diagonal,
which is often a convenient property to have.

The basic principle of the GS algorithm can be demonstrated with two vectors 𝑢, 𝑣 . Suppose we want a
vector 𝑣 ′ so that 𝑢, 𝑣 spans the same space as 𝑢, 𝑣 ′, but 𝑣 ′ ⟂ 𝑢. For this we let

𝑣 ′ ← 𝑣 − 𝑢𝑡𝑣
𝑢𝑡𝑢 𝑢.

It is easy to see that this satisfies the requirements.

Suppose we have an set of vectors 𝑢1, … , 𝑢𝑛 that we want to orthogonalize. We do this by successive
applications of the above transformation:
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For 𝑖 = 1, … , 𝑛:
For 𝑗 = 1, … 𝑖 − 1:

let 𝑐𝑗𝑖 = 𝑢𝑡𝑗𝑢𝑖/𝑢𝑡𝑗𝑢𝑗
For 𝑖 = 1, … , 𝑛:

update 𝑢𝑖 ← 𝑢𝑖 − 𝑢𝑗𝑐𝑗𝑖
Often the vector 𝑣 in the algorithm above is normalized; this adds a line

𝑢𝑖 ← 𝑢𝑖/‖𝑢𝑖‖
to the algorithm. GS orthogonalization with this normalization, applied to the columns of a matrix, is also
known as the QR factorization.
Exercise 13.1. Suppose that we apply the GS algorithm to the columns of a rectangular ma-

trix 𝐴, giving a matrix 𝑄. Prove that there is an upper triangular matrix 𝑅 such that
𝐴 = 𝑄𝑅. (Hint: look at the 𝑐𝑗𝑖 coefficients above.) If we normalize the orthogonal vector
in the algorithm above, 𝑄 has the additional property that 𝑄 𝑡𝑄 = 𝐼 . Prove this too.

The GS algorithm as given above computes the desired result, but only in exact arithmetic. A computer
implementation can be quite inaccurate if the angle between 𝑣 and one of the 𝑢𝑖 is small. In that case, the
Modified Gram-Schmidt (MGS) algorithm will perform better:

For 𝑖 = 1, … , 𝑛:
For 𝑗 = 1, … 𝑖 − 1:

let 𝑐𝑗𝑖 = 𝑢𝑡𝑗𝑢𝑖/𝑢𝑡𝑗𝑢𝑗
update 𝑢𝑖 ← 𝑢𝑖 − 𝑢𝑗𝑐𝑗𝑖

To contrast it with MGS, the original GS algorithm is also known as Classical Gram-Schmidt (CGS).

As an illustration of the difference between the two methods, consider the matrix

𝐴 =
⎛
⎜
⎜
⎝

1 1 1
𝜖 0 0
0 𝜖 0
0 0 𝜖

⎞
⎟
⎟
⎠

where 𝜖 is of the order of the machine precision, so that 1+𝜖2 = 1 in machine arithmetic. The CGSmethod
proceeds as follows:

• The first column is of length 1 in machine arithmetic, so

𝑞1 = 𝑎1 =
⎛
⎜
⎜
⎝

1
𝜖
0
0

⎞
⎟
⎟
⎠
.

• The second column gets orthogonalized as 𝑣 ← 𝑎2 − 1 ⋅ 𝑞1, giving

𝑣 =
⎛
⎜
⎜
⎝

0
−𝜖
𝜖
0

⎞
⎟
⎟
⎠
, normalized: 𝑞2 =

⎛
⎜
⎜
⎜
⎝

0
−√2

2
√2
20

⎞
⎟
⎟
⎟
⎠
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• The third column gets orthogonalized as 𝑣 ← 𝑎3 − 𝑐1𝑞1 − 𝑐2𝑞2, where

{𝑐1 = 𝑞𝑡1𝑎3 = 1
𝑐2 = 𝑞𝑡2𝑎3 = 0 ⇒ 𝑣 =

⎛
⎜
⎜
⎝

0
−𝜖
0
𝜖

⎞
⎟
⎟
⎠
; normalized: 𝑞3 =

⎛
⎜
⎜
⎜
⎝

0
√2
20
√2
2

⎞
⎟
⎟
⎟
⎠

It is easy to see that 𝑞2 and 𝑞3 are not orthogonal at all. By contrast, the MGS method differs in the last
step:

• As before, 𝑞𝑡1𝑎3 = 1, so

𝑣 ← 𝑎3 − 𝑞1 =
⎛
⎜
⎜
⎝

0
−𝜖
𝜖
0

⎞
⎟
⎟
⎠
.

Then, 𝑞𝑡2𝑣 = √2
2 𝜖 (note that 𝑞𝑡2𝑎3 = 0 before), so the second update gives

𝑣 ← 𝑣 − √2
2 𝜖𝑞2 =

⎛
⎜
⎜
⎝

0
𝜖
2− 𝜖
2𝜖

⎞
⎟
⎟
⎠
, normalized:

⎛
⎜
⎜
⎜
⎝

0
√6
6

−√6
6

2√6
6

⎞
⎟
⎟
⎟
⎠

Now all 𝑞𝑡𝑖 𝑞𝑗 are on the order of 𝜖 for 𝑖 ≠ 𝑗.

13.3 The power method

The vector sequence

𝑥𝑖 = 𝐴𝑥𝑖−1,

where 𝑥0 is some starting vector, is called the power method since it computes the product of subsequent
matrix powers times a vector:

𝑥𝑖 = 𝐴𝑖𝑥0.

There are cases where the relation between the 𝑥𝑖 vectors is simple. For instance, if 𝑥0 is an eigenvector
of 𝐴, we have for some scalar 𝜆

𝐴𝑥0 = 𝜆𝑥0 and 𝑥𝑖 = 𝜆𝑖𝑥0.

However, for an arbitrary vector 𝑥0, the sequence {𝑥𝑖}𝑖 is likely to consist of independent vectors. Up to a
point.
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Exercise 13.2. Let 𝐴 and 𝑥 be the 𝑛 × 𝑛 matrix and dimension 𝑛 vector

𝐴 =
⎛
⎜
⎜
⎜
⎝

1 1
1 1

⋱ ⋱
1 1

1

⎞
⎟
⎟
⎟
⎠

, 𝑥 = (0, … , 0, 1)𝑡 .

Show that the sequence [𝑥, 𝐴𝑥, … , 𝐴𝑖𝑥] is an independent set for 𝑖 < 𝑛. Why is this no
longer true for 𝑖 ≥ 𝑛?
Now consider the matrix 𝐵:

𝐵 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1
⋱ ⋱

1 1
1

1 1
⋱ ⋱

1 1
1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑦 = (0, … , 0, 1)𝑡

Show that the set [𝑦 , 𝐵𝑦, … , 𝐵𝑖𝑦] is an independent set for 𝑖 < 𝑛/2, but not for any larger
values of 𝑖.

While in general the vectors 𝑥, 𝐴𝑥, 𝐴2𝑥, … can be expected to be independent, in computer arithmetic this
story is no longer so clear.

Suppose the matrix has eigenvalues 𝜆0 > 𝜆1 ≥ ⋯𝜆𝑛−1 and corresponding eigenvectors 𝑢𝑖 so that

𝐴𝑢𝑖 = 𝜆𝑖𝑢𝑖.
Let the vector 𝑥 be written as

𝑥 = 𝑐0𝑢0 + ⋯ + 𝑐𝑛−1𝑢𝑛−1,
then

𝐴𝑖𝑥 = 𝑐0𝜆𝑖0𝑢𝑖 + ⋯ + 𝑐𝑛−1𝜆𝑖𝑛−1𝑢𝑛−1.
If we write this as

𝐴𝑖𝑥 = 𝜆𝑖0 [𝑐0𝑢𝑖 + 𝑐1 (
𝜆1
𝜆0

)
𝑖
+ ⋯ + 𝑐𝑛−1 (

𝜆𝑛−1
𝜆0

)
𝑖
] ,

we see that, numerically, 𝐴𝑖𝑥 will get progressively closer to a multiple of 𝑢0, the dominant eigenvector .
Hence, any calculation that uses independence of the 𝐴𝑖𝑥 vectors is likely to be inaccurate. Section 5.5.9
discusses iterative methods that can be considered as building an orthogonal basis for the span of the
power method vectors.
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13.4 Nonnegative matrices; Perron vectors

If𝐴 is a nonnegative matrix, the maximal eigenvalue has the property that its eigenvector is nonnegative:
this is the the Perron-Frobenius theorem.

Theorem 5 If a nonnegative matrix 𝐴 is irreducible, its eigenvalues satisfy
• The eigenvalue 𝛼1 that is largest in magnitude is real and simple:

𝛼1 > |𝛼2| ≥ ⋯ .
• The corresponding eigenvector is positive.

The best known application of this theorem is the Googe PageRank algorithm; section 9.4.

13.5 The Gershgorin theorem

Finding the eigenvalues of a matrix is usually complicated. However, there are some tools to estimate
eigenvalues. In this section youwill see a theorem that, in some circumstances, can give useful information
on eigenvalues.

Let 𝐴 be a square matrix, and 𝑥, 𝜆 an eigenpair: 𝐴𝑥 = 𝜆𝑥 . Looking at one component, we have

𝑎𝑖𝑖𝑥𝑖 + ∑
𝑗≠𝑖

𝑎𝑖𝑗𝑥𝑗 = 𝜆𝑥𝑖.

Taking norms:

(𝑎𝑖𝑖 − 𝜆) ≤ ∑
𝑗≠𝑖

|𝑎𝑖𝑗 | |
𝑥𝑗
𝑥𝑖
|

Taking the value of 𝑖 for which |𝑥𝑖| is maximal, we find

(𝑎𝑖𝑖 − 𝜆) ≤ ∑
𝑗≠𝑖

|𝑎𝑖𝑗 |.

This statement can be interpreted as follows:

The eigenvalue 𝜆 is located in the circle around 𝑎𝑖𝑖 with radius ∑𝑗≠𝑖 |𝑎𝑖𝑗 |.
Since we do not know for which value of 𝑖 |𝑥𝑖| is maximal, we can only say that there is some value of 𝑖
such that 𝜆 lies in such a circle. This is the Gershgorin theorem.

Theorem 6 Let 𝐴 be a square matrix, and let 𝐷𝑖 be the circle with center 𝑎𝑖𝑖 and radius ∑𝑗≠𝑖 |𝑎𝑖𝑗 |, then the
eigenvalues are contained in the union of circles ∪𝑖𝐷𝑖.

We can conclude that the eigenvalues are in the interior of these discs, if the constant vector is not an
eigenvector.
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13.6 Householder reflectors

In some contexts the question comes up how to transform one subspace into another.Householder reflectors
are in a sense the minimal solution to this. Consider a unit vector 𝑢, and let

𝐻 = 𝐼 − 2𝑢𝑢𝑡 .

For this matrix we have 𝐻𝑢 = −𝑢, and if 𝑢 ⟂ 𝑣 , then 𝐻𝑣 = 𝑣 . In other words, the subspace of multiples
of 𝑢 is flipped, and the orthogonal subspace stays invariant.

Now for the original problem of mapping one space into another. Let the original space be spanned by a
vector 𝑥 and the resulting by 𝑦 , then note that

{𝑥 = (𝑥 + 𝑦)/2 + (𝑥 − 𝑦)/2
𝑦 = (𝑥 + 𝑦)/2 − (𝑥 − 𝑦)/2.

In other words, we can map 𝑥 into 𝑦 with the reflector based on 𝑢 = (𝑥 − 𝑦)/2.

Figure 13.1: Householder reflector.

We can generalize Householder reflectors to a form

𝐻 = 𝐼 − 2𝑢𝑣 𝑡 .

The matrices 𝐿𝑖 used in LU factorization (see section 5.3) can then be seen to be of the form 𝐿𝑖 = 𝐼 − ℓ𝑖𝑒𝑡𝑖
where 𝑒𝑖 has a single one in the 𝑖-th location, and ℓ𝑖 only has nonzero below that location. That form also
makes it easy to see that 𝐿−1𝑖 = 𝐼 + ℓ𝑖𝑒𝑡𝑖 :

(𝐼 − 𝑢𝑣 𝑡)(𝐼 + 𝑢𝑣 𝑡) = 𝐼 − 𝑢𝑣 𝑡𝑢𝑣 𝑡 = 0

if 𝑣 𝑡𝑢 = 0.
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Chapter 14

Complexity

At various places in this book we are interested in how many operations an algorithm takes. It depends
on the context what these operations are, but often we count additions (or subtractions) and multiplica-
tions. This is called the arithmetic or computational complexity of an algorithm. For instance, summing
𝑛 numbers takes 𝑛 − 1 additions. Another quantity that we may want to describe is the amount of space
(computer memory) that is needed. Sometimes the space to fit the input and output of an algorithm is all
that is needed, but some algorithms need temporary space. The total required space is called the space
complexity of an algorithm.

Both arithmetic and space complexity depend on some description of the input, for instance, for summing
an array of numbers, the length 𝑛 of the array is all that is needed. We express this dependency by saying
‘summing an array of numbers has time complexity 𝑛 − 1 additions, where 𝑛 is the length of the array’.

The time (or space) the summing algorithm takes is not dependent on other factors such as the values of
the numbers. By contrast, some algorithms such as computing the greatest common divisor of an array
of integers can be dependent on the actual values. In the section on sorting 8 you will see both kinds.

Exercise 14.1. What is the time and space complexity of multiplying two square matrices of
size 𝑛 × 𝑛? Assume that an addition and a multiplication take the same amount of time.

Often we aim to simplify the formulas that describe time or space complexity. For instance, if the com-
plexity of an algorithm is 𝑛2 + 2𝑛, we see that for 𝑛 > 2 the complexity is less than 2𝑛2, and for 𝑛 > 4 it is
less than (3/2)𝑛2. On the other hand, for all values of 𝑛 the complexity is at least 𝑛2. Clearly, the quadratic
term 𝑛2 is the most important, and the linear term 𝑛 becomes less and less important by ratio. We express
this informally by saying that the complexity is quadratic in 𝑛 as 𝑛 → ∞: there are constants 𝑐, 𝐶 so that
for 𝑛 large enough the complexity is at least 𝑐𝑛2 and at most 𝐶𝑛2.
This is expressed for short by saying that the complexity is of order 𝑛2, written as 𝑂(𝑛2) as 𝑛 → ∞. In
chapter 4 you will see phenomena that can be described as orders of a parameter that goes to zero. In that
case we write for instance 𝑓 (ℎ) = 𝑂(ℎ2) as ℎ ↓ 0, meaning that 𝑓 is bounded by 𝑐ℎ2 and 𝐶ℎ2 for certain
constants 𝑐, 𝐶 and ℎ small enough.

14.1 Formal definitions
Formally, we distinguish the following complexity types:
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• Big-Oh complexity. This states the existence of an upperbound on the absolute magnitude:

𝑔(𝑥) = 𝑂(𝑓 (𝑥)) ≡ ∃𝐶>0,𝑥0>0∀𝑥>𝑥0 ∶ |𝑔(𝑥)| < 𝐶𝑓 (𝑥)
• Little-oh complexity. This states a function is essentially smaller than another:

𝑔(𝑥) = 𝑜(𝑓 (𝑥)) ≡ ∀𝐶>0∃𝑥0>0∀𝑥>𝑥0 ∶ |𝑔(𝑥)| < 𝐶𝑓 (𝑥)
• Big-Theta complexity. This is like Big-Oh, except that now we have upper and lower bounds:

𝑔(𝑥) = Θ(𝑓 (𝑥)) ≡ ∃𝐶>𝑐>0,𝑥0>0∀𝑥>𝑥0 ∶ 𝑐𝑓 (𝑥) < 𝑔(𝑥) < 𝐶𝑓 (𝑥)
• Finally: Big-Omega complexity states that a function is at least as large as another:

𝑔(𝑥) = Ω(𝑓 (𝑥)) ≡ ∃𝐶>0,𝑥0>0∀𝑥>𝑥0 ∶ 𝑔(𝑥) > 𝐶𝑓 (𝑥)

14.2 The Master Theorem

For many operations, complexity is easily expressed recursively. For instance, the complexity of quicksort
obeys a recurrence

𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑂(𝑛),
expressing that sorting an array of 𝑛 numbers involves twice sorting 𝑛/2 numbers, plus the splitting step,
which is linear in the array size.

The so-called master theorem of complexity allows you to convert these recursive expression to a closed
form formula.

Suppose the function 𝑇 satisfies

𝑇 (𝑛) = 𝑎𝑇(𝑛𝑏 ) + 𝑓 (𝑛)

with 𝑎, 𝑏 ≥ 1 and 𝑓 (⋅) asymptotically positive. Then there are three cases:

1. If

𝑓 (𝑛) = 𝑂 (𝑛log𝑏(𝑎)−𝜖) then 𝑇 (𝑛) = Θ (𝑛log𝑏(𝑎))
2. If

𝑓 (𝑛) = 𝑂 (𝑛log𝑏(𝑎)) then 𝑇 (𝑛) = Θ (𝑛log𝑏(𝑎) log(𝑛))
3. If

𝑓 (𝑛) = 𝑂 (𝑛log𝑏(𝑎)+𝜖) then 𝑇 (𝑛) = Θ (𝑓 (𝑛))
Some examples follow.
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14.2.1 Quicksort and mergesort

The quicksort and mergesort algorithms recursively divide work into two (hopefully) equal halves, pre-
ceeded/followed by a linear splitting/merging step. Thus their complexity satisfies

𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑂(𝑛)

giving, with 𝑎 = 𝑏 = 2 and 𝑓 (𝑛) = 𝑛, by case 2:

𝑇 (𝑛) = Θ(𝑛 log 𝑛).

14.2.2 Matrix-matrix multiplication

We already know that the ordinary triple-loop formulation of matrix-matrix multiplication has a com-
plexity of 𝑂(𝑛3). Multiplying matrices by recursive bisection into 2 × 2 blocks gives

𝑇 (𝑛) = 8𝑇 (𝑛/2) + 𝑂(𝑛2).

Substituting 𝑎 = 8, 𝑏 = 2 gives log𝑏(𝑎) = 3 so case 1 applies with 𝜖 = 1, and we find

𝑇 (𝑛) = Θ(𝑛3).

Slightly more interesting, the Strassen algorithm [179] has 𝑎 = 7, giving an essentially lower complexity
of 𝑂(𝑛log 7) ≈ 𝑂(𝑛2.81). There are other algorithms like this [157], with slightly lower complexities, though
all still well above 𝑂(𝑛2).

14.3 Little-oh complexity

In most algorithms we are interested in big-oh complexity. Computing little-oh complexity is more rare.

As an example, considering factoring large integers, an important part of cryptography. Naively, to find
factors of a number 𝑁 , we would at worst have to try all numbers up to √𝑁 . One of the best algorithms
is the quadratic sieve, which has a complexity of 𝑂(𝑒√ln 𝑛 ln ln 𝑛).
Is this better than 𝑂(√𝑁)? Yes, because

𝑒√ln 𝑛 ln ln 𝑛 = 𝑜(√𝑛).

Exercise 14.2. Prove this. Hint: write √𝑛 = 𝑒ln√𝑛.
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14.4 Amortized complexity

.

There are cases where you are interested in doing a sequence of operations, where the cost of each can
vary widely. In that case, looking at the worst operation is valid, but from a practical point of view not
the most relevant. For this, the concept of amortized complexity has been coined [180].

A common example of amortized complexity is dynamically extending an array. Assume we have allo-
cated space for 𝑛 contiguous elements, and we want to add a new element to the array, keeping the data
contiguous. The following is the space-minimal solution:

1. Allocate 𝑛 + 1 elements;
2. copy the existing data over;
3. write the new element;
4. de-allocate the old array.

Exercise 14.3. What is the complexity of doing this operation repeatedly? Ignore all cost of
creating the arrays, and consider only the copy operation, assuming a unit time per
element.

A more efficient scheme is used in the run-time libraries of such languages as C++:

1. Given allocated space for 𝑛 elements, and wanting to store an 𝑛 + 1st element:
2. Allocate 2𝑛 elements;
3. Copy data over, write the new element;
4. De-allocate the old array, and:
5. For the next 𝑛 − 1 elements, write into the unused portions of the new array.

This solution is not minimal in space: if you never fill up the 2𝑛 elements, some memory will be wasted.
However, by the above measure of the cost of writing elements it is optimal.

Exercise 14.4. Show that the cost of storing 𝑛 elements by this scheme is 𝑂(𝑛). What is the
actual multiplicative constant?

Since writing 𝑛 elements has complexity 𝑂(𝑛), we say that the amortized complexity of this scheme is 𝑂(1),
which is optimal up to a constant.
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Chapter 15

Partial Differential Equations

Partial Differential Equations are the source of a large fraction of HPC problems. Here is a quick derivation
of two of the most important ones.

15.1 Partial derivatives

Derivatives of a function 𝑢(𝑥) are a measure of the rate of change. Partial derivatives to the same, but for
a function 𝑢(𝑥, 𝑦) of two variables. Notated 𝑢𝑥 and 𝑢𝑦 , these partial derivates indicate the rate of change
if only one variable changes and the other stays constant.

Formally, we define 𝑢𝑥 , 𝑢𝑦 by:

𝑢𝑥 (𝑥, 𝑦) = limℎ→0
𝑢(𝑥 + ℎ, 𝑦) − 𝑢(𝑥, 𝑦)

ℎ , 𝑢𝑦 (𝑥, 𝑦) = limℎ→0
𝑢(𝑥, 𝑦 + ℎ) − 𝑢(𝑥, 𝑦)

ℎ

15.2 Poisson or Laplace Equation

Let 𝑇 be the temperature of a material, then its heat energy is proportional to it. A segment of length Δ𝑥
has heat energy 𝑄 = 𝑐Δ𝑥 ⋅ 𝑢. If the heat energy in that segment is constant

𝛿𝑄
𝛿𝑡 = 𝑐Δ𝑥 𝛿𝑢𝛿𝑡 = 0

but it is also the difference between inflow and outflow of the segment. Since flow is proportional to
temperature differences, that is, to 𝑢𝑥 , we see that also

0 = 𝛿𝑢
𝛿𝑥 |𝑥+Δ𝑥 − 𝛿𝑢

𝛿𝑥 |𝑥
In the limit of Δ𝑥 ↓ 0 this gives 𝑢𝑥𝑥 = 0, which is called the Laplace equation. If we have a source term,
for instance corresponding to externally applied heat, the equation becomes 𝑢𝑥𝑥 = 𝑓 , which is called the
Poisson equation.

420



15.3. Heat Equation

15.3 Heat Equation

Let 𝑇 be the temperature of a material, then its heat energy is proportional to it. A segment of length Δ𝑥
has heat energy 𝑄 = 𝑐Δ𝑥 ⋅ 𝑢. The rate of change in heat energy in that segment is

𝛿𝑄
𝛿𝑡 = 𝑐Δ𝑥 𝛿𝑢𝛿𝑡

but it is also the difference between inflow and outflow of the segment. Since flow is proportional to
temperature differences, that is, to 𝑢𝑥 , we see that also

𝛿𝑄
𝛿𝑡 = 𝛿𝑢

𝛿𝑥 |𝑥+Δ𝑥 − 𝛿𝑢
𝛿𝑥 |𝑥

In the limit of Δ𝑥 ↓ 0 this gives 𝑢𝑡 = 𝛼𝑢𝑥𝑥 .

15.4 Steady state

The solution of an IBVP is a function 𝑢(𝑥, 𝑡). In cases where the forcing function and the boundary con-
ditions do not depend on time, the solution will converge in time, to a function called the steady state
solution:

lim𝑡→∞ 𝑢(𝑥, 𝑡) = 𝑢steadystate(𝑥).

This solution satisfies a BVP, which can be found by setting 𝑢𝑡 ≡ 0. For instance, for the heat equation

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑞(𝑥)

the steady state solution satisfies −𝑢𝑥𝑥 = 𝑞(𝑥).
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Chapter 16

Taylor series

Taylor series expansion is a powerful mathematical tool. In this course it is used several times in proving
properties of numerical methods.

The Taylor expansion theorem, in a sense, asks how well functions can be approximated by polynomials,
that is, for a given function 𝑓 , can we find coefficients 𝑐𝑖 with 𝑖 = 1, … , 𝑛 so that

𝑓 (𝑥) ≈ 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛.

This question obviously needs to be refined. What do we mean by ‘approximately equal’? This approx-
imation formula can not hold for all functions 𝑓 and all 𝑥 : the function sin 𝑥 is bounded for all 𝑥 , but
any polynomial is unbounded for 𝑥 → ±∞, so any polynomial approximation to the sin 𝑥 function is
unbounded. Clearly we can only approximate on an interval.

We will show that a function 𝑓 with sufficiently many derivatives can be approximated as follows: if the
𝑛-th derivative 𝑓 (𝑛) is continuous on an interval 𝐼 , then there are coefficients 𝑐0, … , 𝑐𝑛−1 such that

∀𝑥∈𝐼 ∶ |𝑓 (𝑥) − ∑
𝑖<𝑛

𝑐𝑖𝑥 𝑖| ≤ 𝑐𝑀𝑛 where 𝑀𝑛 = max𝑥∈𝐼 |𝑓 (𝑛)(𝑥)|

It is easy to get inspiration for what these coefficients should be. Suppose

𝑓 (𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯

(where we will not worry about matters of convergence and how long the dots go on) then filling in

𝑥 = 0 gives 𝑐0 = 𝑓 (0).

Next, taking the first derivative

𝑓 ′(𝑥) = 𝑐1 + 2𝑐2𝑥 + 3𝑐3𝑥2 + ⋯

and filling in

𝑥 = 0 gives 𝑐1 = 𝑓 ′(0).
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From the second derivative

𝑓 ″(𝑥) = 2𝑐2 + 6𝑐3𝑥 + ⋯
so filling in 𝑥 = 0 gives

𝑐2 = 𝑓 ″(0)/2.
Similarly, in the third derivative

filling in 𝑥 = 0 gives 𝑐3 = 1
3!𝑓 (3)(0).

Now we need to be a bit more precise. Cauchy’s form of Taylor’s theorem says that

𝑓 (𝑥) = 𝑓 (𝑎) + 1
1!𝑓

′(𝑎)(𝑥 − 𝑎) + ⋯ + 1
𝑛!𝑓

(𝑛)(𝑎)(𝑥 − 𝑎)𝑛 + 𝑅𝑛(𝑥)

where the ‘rest term’ 𝑅𝑛 is

𝑅𝑛(𝑥) = 1
(𝑛 + 1)!𝑓

(𝑛+1)(𝜉 )(𝑥 − 𝑎)𝑛+1 where 𝜉 ∈ (𝑎, 𝑥) or 𝜉 ∈ (𝑥, 𝑎) depending.

If 𝑓 (𝑛+1) is bounded, and 𝑥 = 𝑎 + ℎ, then the form in which we often use Taylor’s theorem is

𝑓 (𝑥) =
𝑛
∑
𝑘=0

1
𝑘!𝑓

(𝑘)(𝑎)ℎ𝑘 + 𝑂(ℎ𝑛+1).

We have now approximated the function 𝑓 on a certain interval by a polynomial, with an error that
decreases geometrically with the inverse of the degree of the polynomial.

For a proof of Taylor’s theorem we use integration by parts. First we write

∫
𝑥

𝑎
𝑓 ′(𝑡)𝑑𝑡 = 𝑓 (𝑥) − 𝑓 (𝑎)

as

𝑓 (𝑥) = 𝑓 (𝑎) + ∫
𝑥

𝑎
𝑓 ′(𝑡)𝑑𝑡

Integration by parts then gives

𝑓 (𝑥)=𝑓 (𝑎) + [𝑥𝑓 ′(𝑥) − 𝑎𝑓 ′(𝑎)] − ∫𝑥𝑎 𝑡𝑓 ″(𝑡)𝑑𝑡
=𝑓 (𝑎) + [𝑥𝑓 ′(𝑥) − 𝑥𝑓 ′(𝑎) + 𝑥𝑓 ′(𝑎) − 𝑎𝑓 ′(𝑎)] − ∫𝑥𝑎 𝑡𝑓 ″(𝑡)𝑑𝑡
=𝑓 (𝑎) + 𝑥 ∫𝑥𝑎 𝑓 ″(𝑡)𝑑𝑡 + (𝑥 − 𝑎)𝑓 ′(𝑎) − ∫𝑥𝑎 𝑡𝑓 ″(𝑡)𝑑𝑡
=𝑓 (𝑎) + (𝑥 − 𝑎)𝑓 ′(𝑎) + ∫𝑥𝑎 (𝑥 − 𝑡)𝑓 ″(𝑡)𝑑𝑡

Another application of integration by parts gives

𝑓 (𝑥) = 𝑓 (𝑎) + (𝑥 − 𝑎)𝑓 ′(𝑎) + 1
2(𝑥 − 𝑎)2𝑓 ″(𝑎) + 1

2 ∫
𝑥

𝑎
(𝑥 − 𝑡)2𝑓‴(𝑡)𝑑𝑡
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Inductively, this gives us Taylor’s theorem with

𝑅𝑛+1(𝑥) = 1
𝑛! ∫

𝑥

𝑎
(𝑥 − 𝑡)𝑛𝑓 (𝑛+1)(𝑡)𝑑𝑡

By the mean value theorem this is

𝑅𝑛+1(𝑥)= 1
(𝑛+1)!𝑓 (𝑛+1)(𝜉 ) ∫𝑥𝑎 (𝑥 − 𝑡)𝑛𝑓 (𝑛+1)(𝑡)𝑑𝑡

= 1
(𝑛+1)!𝑓 (𝑛+1)(𝜉 )(𝑥 − 𝑎)𝑛+1
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Chapter 17

Minimization

17.1 Descent methods

We consider a multivariate function 𝑓 ∶ 𝑅𝑁 → and the problem of finding the vector ̄𝑥 for which is attains
its minimum. Even for smooth functions we are immediately faced with the fact that there are local and
global minima; for now we satisfy ourselves with finding a local minimum.

Rather than finding the minimum in one large calculation, we use an iterative strategy where we start
with a point ̄𝑥 , updating it to ̄𝑥 + ℎ̄, and repeating this process. The update vector ℎ̄ is found through a
line search strategy: we settle on a search direction ℎ̄, find a step size 𝜏 along that direction, and update

̄𝑥 ← ̄𝑥 + 𝜏 ℎ̄.

17.1.1 Steepest descent

Using the multi-dimensional form of the Taylor expansion formula (section 16) we can write any suffi-
ciently smooth function as

𝑓 ( ̄𝑥 + ℎ̄) = 𝑓 ( ̄𝑥) + ℎ̄𝑡∇𝑓 + ⋯ .

it is not hard to see that choosing ℎ̄ = −∇𝑓 gives the most minimization, so we set

𝑥new ≡ 𝑥 − 𝜏∇𝑓 .

This method is called gradient descent or steepest descent.

For the new function value this gives

𝑓 ( ̄𝑥 − 𝜏∇𝑓 ) ≈ 𝑓 ( ̄𝑥) − 𝜏‖∇𝑓 ‖2

so for 𝜏 small enough this makes the new function value both positive, and less than 𝑓 ( ̄𝑥).
The step size 𝜏 can be computed for quadratic functions 𝑓 , and approximated otherwise:

𝑓 ( ̄𝑥 + 𝜏 ℎ̄) = 𝑓 ( ̄𝑥) + 𝜏 ℎ̄𝑡∇𝑓 + 𝜏2
2 ℎ𝑡(∇ ⋅ ∇𝑓 )ℎ + ⋯ .
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Ignoring higher order terms and setting 𝛿𝑓 /𝛿𝜏 = 0 gives

𝜏 = −ℎ̄𝑡∇𝑓 /ℎ𝑡(∇ ⋅ ∇𝑓 )ℎ.

Another strategy for finding a suitable step size is known as backtracking:

• Start with a default step size, for instance 𝜏 ≡ 1.
• Then until 𝑓 ( ̄𝑥 + 𝜏 ℎ̄) < 𝑓 ( ̄𝑥) do

𝜏 ← 𝜏/2.

17.1.2 Stochastic gradient descent

While the gradient is the optimal search direction in any given step, overall it need not be the best.
For instance, for quadratic problems, which includes many problems from PDEs, a better choice is to
orthogonalize search directions. On the other hand, in ML applications, Stochastic Gradient Descent (SGD)
is a good choice, where the coordinate directions are used as search directions. In this case

𝑓 (𝑥 + 𝜏𝑒𝑖) = 𝑓 (𝑥) + 𝜏 𝑑𝑓𝑑𝑒𝑖
+ 𝜏2

2
𝛿2𝑓
𝛿𝑒2𝑖

Then:

𝜏 = −(∇𝑓 )𝑖/
𝛿2𝑓
𝛿𝑒2𝑖

.

17.1.3 Code

17.1.3.1 Preliminaries

We declare a vector class that is a standard vector, with operations defined on it such as addition, but
also rotation.

There is a derived class unit_vector that does the obvious.

17.1.3.2 Framework

We start by defining functions as a pure virtual class, meaning that any function needs to support the
methods mentioned here:

// minimlib.h
class function {
public:

virtual double eval( const valuevector& coordinate ) const = 0;
virtual valuevector grad( const valuevector& coordinate ) const = 0;
virtual std::shared_ptr<matrix> delta( const valuevector& coordinate ) const = 0;
virtual int dimension() const = 0;

};
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Using such a function it becomes possible to define various update steps. For instance, the steepest descent
step uses the gradient:

// minimlib.cxx
valuevector steepest_descent_step

( const function& objective,const valuevector& point ) {
auto grad = objective.grad(point);
auto delta = objective.delta(point);

auto search_direction( grad );
auto hf = grad.inprod(search_direction);
auto hfh = search_direction.inprod( delta->mvp(search_direction) );
auto tau = - hf / hfh;
auto new_point = point + ( search_direction * tau );
return new_point;

};

On the other hand, stochastic descent is based on unit vectors:

valuevector stochastic_descent_step
( const function& objective,const valuevector& point, int idim,

double damp) {
int dim = objective.dimension();
auto grad = objective.grad(point);
auto delta = objective.delta(point);

auto search_direction( unit_valuevector(dim,idim) );
auto gradfi = grad.at(idim);
auto hf = gradfi;
auto hfh = delta->d2fdxi2(idim);
auto tau = - hf / hfh;
auto new_point = point + ( search_direction * (tau * damp) );

return new_point;
};

17.1.3.3 Sanity tests

Using steepest descent on a circle gives convergence in one step:
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Code:

// ellipse.cxx
ellipse circle
( valuevector( {1.,1.} ),valuevector( {0.,0.} ) );

valuevector search_point( { 1.,1. } );
auto value = circle.eval(search_point);

auto new_point = steepest_descent_step(circle,
search_point);

auto new_value = circle.eval(new_point);
cout << "Starting point "

<< "(" << search_point.at(0)
<< "," << search_point.at(1) << "); "
<< "with value: " << value << "\n"
<< " becomes "
<< "(" << new_point.at(0)
<< "," << new_point.at(1) << "); "
<< "with value: " << new_value << endl;

Output
[code/minimization]
descentcircle:

Starting point (1,1); with
value: 2

becomes (0,0); with value:
0

On the other hand, steepest descent on an ellipse takes a number of iterations:
Code:

ellipse circle( valuevector( {1.,.1} ),valuevector(
{0.,0.} ) );
valuevector search_point( { 1.,1. } );
auto value = circle.eval(search_point);
for (int step=0; step<5 and value>.0001; step++) {

auto new_point = steepest_descent_step(circle,
search_point);

auto new_value = circle.eval(new_point);
cout << "Starting point " << fixed

<< "(" << setprecision(4) << search_point.at(0)
<< "," << setprecision(4) << search_point.at(1) <<

"); "
<< "with value: " << value << "\n"
<< " becomes "
<< "(" << setprecision(4) << new_point.at(0)
<< "," << setprecision(4) << new_point.at(1) << ")

; "
<< "with value: " << new_value << endl;

search_point = new_point; value = new_value;
}

Output
[code/minimization]
descentellipse:

Starting point
(1.0000,1.0000); with
value: 101.0000

becomes (0.8991,-0.0090);
with value: 0.8165

Starting point
(0.8991,-0.0090); with
value: 0.8165

becomes (0.0736,0.0736);
with value: 0.5466

Starting point
(0.0736,0.0736); with
value: 0.5466

becomes (0.0661,-0.0007);
with value: 0.0044

Starting point
(0.0661,-0.0007); with
value: 0.0044

becomes (0.0054,0.0054);
with value: 0.0030

Starting point
(0.0054,0.0054); with
value: 0.0030

becomes (0.0049,-0.0000);
with value: 0.0000
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17.2 Newton’s method
Newton’s method (or the Newton-Raphson method) is the iterative procedure

𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)/𝑓 ′(𝑥𝑛)
for finding a zero of a function 𝑓 , that is, a value 𝑥 for which 𝑓 (𝑥) = 0. It requires knowledge of the
derivative 𝑓 ′ of the function, and it can be justified from figures such as 17.1.

Figure 17.1: One step in the one-dimensional Newton method.

Iteratively:

Another justification comes from minimization: if a function 𝑓 is twice differentiable, we can write

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + ℎ𝑡∇𝑓 + 1
2ℎ

𝑡(∇2𝑓 )ℎ
and the minimum is attained at

𝑥new = 𝑥 − (∇2𝑓 )−1∇𝑓 .
This is equivalent to finding a zero of the gradient:

0 = ∇𝑓 (𝑥 + ℎ) = ∇𝑓 (𝑥) + ℎ𝑡(∇2𝑓 (𝑥))ℎ.
Exercise 17.1. Let 𝑓 (𝑥1, 𝑥2) = (10𝑥21 + 𝑥22 )/2 + 5 log(1 + 𝑒−𝑥1−𝑥2). How fast do gradient descent

and the Newton’s method converge? To get insight in their differing behaviors, plot a
number of iterates against level curves of the function.

This exercise gives some idea of that is wrong with gradient descent: it always steps perpendicular to the
current level curve. However, the minimum does not necessarily lie in that direction.

Without proof we state:
• The Newtonmethod will converge to the zero if the starting point of the iteration is close enough
to the zero, and if the function is differentiable in the zero.

• For many functions Newton’s method will not converge, but it is possible to obtain convergence
by introducing damping, or doing an inexact update:

𝑥𝑛+1 = 𝑥𝑛 − 𝛼𝑓 (𝑥𝑛)/𝑓 ′(𝑥𝑛)
where 𝛼 < 1.
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Exercise 17.2. It is possible for Newton’s method to be in a cycle. Suppose this is a cycle of
length two:

𝑥0 → 𝑥1 → 𝑥2 = 𝑥0.

If youwrite out the equations for this cycle you’ll find a differential equation for 𝑓 . What
is the solution? Why doesn’t the Newton method converge for this function?

In multiple dimensions, that is, with a function 𝑓 ∶ ℝ𝑁 → ℝ Newton’s method becomes an iterated linear
system solution :

̄𝑥𝑛+1 = ̄𝑥𝑛 − 𝐹( ̄𝑥𝑛)−1𝑓 ( ̄𝑥𝑛)

where 𝐹 is the Jacobian of 𝑓 .
Since Newton’s method is an iterative process we do not need the solution of this linear system to full
accuracy, so inexact solutions, for instance through iterative solution, is often feasible.

17.2.1 Inexact Newton’s method

There is a variety of reasons why Newton’s method would not converge. (In fact, plotting the regions
from where it does converge will, for suitable functions, give nice fractals.) For this reason, in practice an
inexact Newton’s method is used. The inexactness comes in two ways:

• Instead of the ‘optimal’ step length we use a fraction. This is often chosen through ‘backtracking’,
and a choice is adopted for which at least some decrease in function value is observed.

• Instead of the inverse of the Jacobian we use an approximation of that operator. For instance,
we could compute the Jacobian (often an expensive process) and then use it for multiple Newton
steps.

A combination of these techniques can be shown to give guaranteed converence [199].
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Chapter 18

Random numbers

Random number generation is useful, for generating random test data, or in Monte Carlo simulation; see
chapter 11.

Here we discuss Random Number Generators (RNGs) in general, their use in programming languages,
and the problems of parallel random number generationn.

18.1 Random Number Generation
Random numbers are often used in simulations as some examples below will show. True random numbers
are very hard to obtain: they could be generated by measuring quantum processes such as radioactive
particles. Starting with the Intel Ivy Bridge, Intel’s processors have a hardware random number generator
based on thermal noise [95].)

The most common solution is to use pseudo-random numbers. This means that we use a deterministic
mathematical process, that is sufficiently irregular that for practical purposes no order can be found in it.

18.1.1 Sequential random number generators

An easy way to generate random numbers (we leave off the ‘pseudo’ qualification) is to use linear congru-
ential generators (for all you ever need to know about random numbers, see Knuth [120]), recurrences of
the form

𝑥𝑘+1 = (𝑎𝑥𝑘 + 𝑏) mod 𝑚.
This sequence is periodic, since it consists of nonnegative integers at most 𝑚 − 1, and with period 𝑚
under certain conditions. A typical period is 231. The starting point 𝑥0 of the series is known as the ‘seed’.
Software for random numbers often lets you specify the seed. To get reproducible results you would run
your program with the same seed multiple times; to get random behavior over multiple runs of your
program you could for instance derive the seed from clock and calendar functions.

Linear congruential generators may have some amount of correlation between lower bits. A different
principle of generating random numbers is the lagged Fibonacci random number generator

𝑋𝑖 = 𝑋𝑖−𝑝 ⊗ 𝑋𝑖−𝑞
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where 𝑝, 𝑞 are the lag parameter, and ⊗ is any binary operation, such as addition or multiplication mod-
ulo 𝑀 .

The main problems with lagged Fibonacci generators are:

• They require setting max(𝑝, 𝑞) initial values, and their randomness is sensitive to these choices;
• They theory is not as developed as for congruential generators, so their is a greater reliance on
statistical tests to evaluate their ‘randomness’.

18.2 Random numbers in programming languages
18.2.1 C

There is an easy (but not terribly great) RNG that works the same in C and C++.

#include <random>
using std::rand;
float random_fraction =

(float)rand()/(float)RAND_MAX;

The function rand yields an int – a different one every time you call it – in the range from zero to
RAND_MAX. Using scaling and casting you can then produce a fraction between zero and one with the
above code.

If you run your program twice, you will twice get the same sequence of random numbers. That is great
for debugging your program but not if you were hoping to do some statistical analysis. Therefore you can
set the random number seed from which the random sequence starts by the srand function. Example:

srand(time(NULL));

seeds the random number generator from the current time. This call should happen only once, typically
somewhere high up in your main.

18.2.1.1 Problems with the C random generator

• The random number generator has a period of 215, which may be small.
• There is only one generator algorithm, which is implementation-dependent, and has no guaran-
tees on its quality.

• There are no mechanisms fort ransforming the sequence to a range. The common idiom

int under100 = rand() % 100

is biased to small numbers. Figure 18.1 shows this for a generator with period 7 taken modulo 3.

18.2.1.2 Other generators

There are other RNGs for C, coming from Unix system calls.

• drand48: obsolete in System V 3, replaced by rand.
• rand_r: a thread-safe variant of rand. Marked obsolete in POSIX 1-2008
• random: a more modern version of rand.
• random_r: a thread-safe variant of random.

432 Introduction to High Performance Scientific Computing



18.2. Random numbers in programming languages

Figure 18.1: Low number bias of a random number generator taken module.

18.2.2 C++

The Standard Template Library (STL) has a random number generator that is more general and more
flexible than the C version.

• There are several generators that give uniformly distributed numbers;
• then there are distributions that translate this to non-uniform or discrete distributions.

First you declare an engine; later this will be transformed into a distribution:

std::default_random_engine generator;

This generator will start at the same value every time. You can seed it:

std::random_device r;
std::default_random_engine generator{ r() };

Next, you need to declare the distribution. For instance, a uniform distribution between given bounds:

std::uniform_real_distribution<float> distribution(0.,1.);

A roll of the dice would result from:

std::uniform_int_distribution<int> distribution(1,6);

18.2.2.1 Random floats

// seed the generator
std::random_device r;
// std::seed_seq ssq{r()};
// and then passing it to the engine does the same

// set the default random number generator
std::default_random_engine generator{r()};

// distribution: real between 0 and 1
std::uniform_real_distribution<float> distribution(0.,1.);

cout << "first rand: " << distribution(generator) << endl;
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18.2.2.2 Dice throw

// set the default generator
std::default_random_engine generator;

// distribution: ints 1..6
std::uniform_int_distribution<int> distribution(1,6);

// apply distribution to generator:
int dice_roll = distribution(generator);

// generates number in the range 1..6

18.2.2.3 Poisson distribution

Another distribution is the Poisson distribution:

std::default_random_engine generator;
float mean = 3.5;
std::poisson_distribution<int> distribution(mean);
int number = distribution(generator);

18.2.3 Fortran

In this section we briefly discuss the Fortran random number generator. The basic mechanism is through
the library subroutine random_number, which has a single argument of type REAL with INTENT(OUT):

real(4) :: randomfraction
call random_number(randomfraction)

The result is a random number from the uniform distribution on [0, 1).
Setting the random seed is slightly convoluted. The amount of storage needed to store the seed can be
processor and implementation-dependent, so the routine random_seed can have three types of named
argument, exactly one of which can be specified at any one time. The keyword can be:

• SIZE for querying the size of the seed;
• PUT for setting the seed; and
• GET for querying the seed.

A typical fragment for setting the seed would be:

integer :: seedsize
integer,dimension(:),allocatable :: seed

call random_seed(size=seedsize)
allocate(seed(seedsize))
seed(:) = ! your integer seed here
call random_seed(put=seed)
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18.2.4 Python

Python has a random module:

import random
x = random.random()
i = random.randint(lo,hi)

18.3 Parallel random number generation

Random number generation is problematic in parallel. To see this, consider a parallel process that uses
a random number generator on each subprocess, and consider a single processor emulating the parallel
process. Now this single process in effect has a random number generator that consists of interleaving
the parallel generator results. This means that, if we use the same generator in all parallel processes, the
effective generator over the whole process will produce stretches of identical values.

There are various ways out.

18.3.1 Manager-worker generator

We can generate the random numbers centrally. In shared memory that could mean making its operation
atomic. This may introduce a serious bottleneck.

Exercise 18.1. Critical sections are usually justified if the work spent there is of lower order
than the parallel work. Why does that argument not apply here.

Another solution would be to have one thread or process that generates the random numbers and dis-
tributes them to the other processes. Doing this on a number-by-number basis causes considerable over-
head. Instead, it would be possible for the generator process to distribute blocks of numbers. However,
the manner in which this is done may again cause correlation between processes.

18.3.2 Sequence splitting solutions

A better solution is to set up independent generators with parameter choices that guarantee statistical
randomness. This is not simple. For instance, if two sequences 𝑥(1)𝑖 , 𝑥(2)𝑖 have the same values of 𝑎, 𝑏, 𝑚,
and their starting points are close together, the sequences will be strongly correlated. Less trivial examples
of correlation exist.

Various techniques for random number generation exist, such as using two sequences, where one gener-
ates the starting points for the other sequence, which is the one actually used in the simulation. Software
for parallel random number generator can be found at http://sprng.cs.fsu.edu/ [144].

If it is possible given 𝑥𝑖 to compute 𝑥𝑖+𝑘 cheaply, one use a leapfrogging technique, where 𝑘 processes have
disjoint series 𝑖 ↦ 𝑥𝑠𝑘+𝑖𝑘 where 𝑥𝑠𝑘 is the starting point for the 𝑘-th series.
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18.3.3 Blocked random number generators

Some random number generators (see [133]) allow you to calculate a value that is many iteration away
from the seed. You could then take the block of values from the seed to that iteration and give it to one
processor. Similarly, each processor would get a contiguous block of iterations of the generator.

18.3.4 Keyed random number generators

Some random number generators are not recursive, but allow an explicit formulation

𝑥𝑛 = 𝑓 (𝑛),

that is, the 𝑛-th number is a function of its ‘key’, 𝑛. Adding a block key into the equation

𝑥(𝑘)𝑛 = 𝑓𝑘(𝑛)

allows for parallelism over processes indexed by 𝑘. See [167].

18.3.5 Mersenne twister

The Mersenne twister random number generator has been adapted to allow for parallel streams of uncor-
related numbers [145]. Here the process ID is encoded into the generator.
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Chapter 19

Graph theory

Graph theory is the branch of mathematics that studies pairwise relations between objects. Graphs both
appear as tools for analyzing issues in HPC, and as objects of study themselves. This appendix introduces
the basic concepts and some relevant theory.

19.1 Definitions
A graph consists of a set of objects, and set of relations between them. The objects, called the nodes or
vertices of the graph, usually form a finite set, so we usually identify them with consecutive integers 1… 𝑛
or 0… 𝑛 − 1. The relation that holds between nodes is described by the edges of the graph: if 𝑖 and 𝑗 are
related, we say that (𝑖, 𝑗) is an edge of the graph. This relation does not need to be symmetric, take for
instance the ‘less than’ relation.

Formally, then, a graph is a tuple 𝐺 = ⟨𝑉 , 𝐸⟩ where 𝑉 = {1, … 𝑛} for some 𝑛, and 𝐸 ⊂ {(𝑖, 𝑗)∶ 1 ≤ 𝑖, 𝑗 ≤
𝑛, 𝑖 ≠ 𝑗}.

{𝑉 = {1, 2, 3, 4, 5, 6}
𝐸 = {(1, 2), (2, 6), (4, 3), (4, 4), (4, 5)}

Figure 19.1: A simple graph.

A graph is called an undirected graph if (𝑖, 𝑗) ∈ 𝐸 ⇔ (𝑗, 𝑖) ∈ 𝐸. The alternative is a directed graph, where we
indicate an edge (𝑖, 𝑗) with an arrow from 𝑖 to 𝑗.
Two concepts that often appear in graph theory are the degree and the diameter of a graph.

Definition 3 The degree denotes the maximum number of nodes that are connected to any node:

𝑑(𝐺) ≡ max𝑖 |{𝑗 ∶ 𝑗 ≠ 𝑖 ∧ (𝑖, 𝑗) ∈ 𝐸}| .
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Definition 4 The diameter of a graph is the length of the longest shortest path in the graph, where a path
is defined as a set of vertices 𝑣1, … , 𝑣𝑘+1 such that 𝑣𝑖 ≠ 𝑣𝑗 for all 𝑖 ≠ 𝑗 and

∀1≤𝑖≤𝑘 ∶ (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸.
The length of this path is 𝑘.

The concept of diameter is illustrated in figure 19.2.

A graph

Two paths from 1 to 6; ⟨1, 4, 6⟩ is the shorter

The longest shortest path of this graph

Figure 19.2: Shortest paths.

A path where all nodes are disjoint except for 𝑣1 = 𝑣𝑘+1 is called a cycle.

Sometimes we are only interested in the mere existence of an edge (𝑖, 𝑗), at other times we attach a value
or ‘weight’ 𝑤𝑖𝑗 to that edge. A graph with weighted edges is called a weighted graph. Such a graph can be
represented as a tuple 𝐺 = ⟨𝑉 , 𝐸,𝑊 ⟩where 𝐸 and𝑊 have the same cardinality. Conversely, an unweighted
graph has all weights the same value, in which case we omit mention of weights.

19.2 Common types of graphs
19.2.1 Directed Acyclic Graphs

A graph that does not have cycles is called an acyclic graph A special case of this type of graph is the
Directed Acyclic Graph (DAG). This type of graph can for instance be used to model dependencies between
tasks: if there is an edge from 𝑖 to 𝑗, it means that task 𝑖 has to be done before task 𝑗.
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19.2.2 Trees

One special case of DAGs is the tree graph, or for short a tree: here any node can have multiple outgoing
edges, but only one incoming edge. Nodes with no outgoing edges are leaf nodes; a node with no incoming
edges is called a root, and all other nodes are called interior nodes.

Exercise 19.1. Can a tree have more than one root?

19.2.3 Separable graphs

A separable graph is a graph consisting of two sets of nodes, where all connections are inside either of the
sets. Such graph can obviously be processed in parallel, so several parallelization algorithms are concerned
with transforming a graph to a separable one. If a graph can be written as 𝑉 = 𝑉1 + 𝑉2 + 𝑆, where nodes
in 𝑉1, 𝑉2 are only connected to 𝑆, but not to the other set, we call 𝑆 a separator .

19.2.4 Bipartite graphs

If a graph can be partitioned into two sets of nodes, where edges only run from the one set to the other,
but not inside a set, we call this a bipartite graph.

19.3 Graph colouring and independent sets

We can assign labels to the nodes of a graph, which is equivalent to partitioning the set of nodes into
disjoint subsets. One type of labeling that is of interest is graph colouring: here the labels (or ‘colours’) are
chosen so that, if nodes 𝑖 and 𝑗 have the same colour, there is no edge connecting them: (𝑖, 𝑗) ∉ 𝐸.
There is a trivial colouring of a graph, where each node has its own colour. More interestingly, the mini-
mum number of colours with which you can colour a graph is called the colour number of the graph.

Exercise 19.2. Show that, if a graph has degree 𝑑 , the colour number is at most 𝑑 + 1.
A famous graph colouring problem is the ‘four colour theorem’: if a graph depicts countries on a two-
dimensional map (a so-called ‘planar’ graph), then the colour number is at most four. In general, finding
the colour number is hard (in fact, NP-hard).

The colour sets of a graph colouring are also called independent sets, since within each colour no node is
connected to a node of the same colour.

There is a trivial way of finding independent sets: declare each node to have its own unique colour. On the
other hand, finding the ‘best’ division in independent sets, for instance through finding the colour number
of the graph, is difficult. However, often it is enough to find a reasonable partitioning of the nodes into
independent sets, for instance in constructing paralell ILU preconditioners; section 6.7.5. The following
algorithm does that [113, 142]:

• Give each node a unique random number.
• Now find the set of nodes that have a higher number than all of their neighbors; call this the first
independent set.
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• Remove this set from the graph, and find again the nodes with a higher number than all their
neighbors; this will be the second set.

• Repeat this procedure until all nodes are in an independent set.

Exercise 19.3. Convince yourself that the sets found this way are indeed independent.

19.4 Graph algorithms

In this section we only briefly touch on graph algorithms; a full discussion can be found in section 9.1.

• Distance algorithms. In applications such as traffic routing it is of interest to know the shortest
distance from a given node to all others: the single source shortest path problem; or the shortest
distance for any pair: the all-pairs shortest path problem.

• Connectivity algorithms. In social networks it is of interest to know if two people are connected
at all, if the graph can be split up into unconnected subgraphs, or whether some person is the
crucial bridge between two groups.

19.5 Graphs and matrices

A graph can be rendered in a number of ways. You could of course just list nodes and edges, but little
insight can be derived that way. Simple graphs can be visualized by drawing vertices and edges, but for
large graphs this becomes unwieldy. Another option is to construct the adjacency matrix of the graph. For
a graph 𝐺 = ⟨𝑉 , 𝐸⟩, the adjacency matrix 𝑀 (with a size 𝑛 equal to the number of vertices |𝑉 |) is defined
by

𝑀𝑖𝑗 = {1 (𝑖, 𝑗) ∈ 𝐸
0 otherwise

Conversely, if you have a matrix, especially a sparse matrix, you can construct its adjacency graph. This is
illustrated in figure 19.3 for both a dense and a sparse matrix. In this example, the matrices are structurally

Figure 19.3: A dense and a sparse matrix, both with their adjacency graph.

symmetric, so we use lines instead of arrows in the graphs. There is an edge on each vertex corresponding
to the diagonal element; this edge will often be left out of illustrations.
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For graphs with edge weights, we set the elements of the adjacency matrix to the weights:

𝑀𝑖𝑗 = {𝑤𝑖𝑗 (𝑖, 𝑗) ∈ 𝐸
0 otherwise

If a matrix has no zero elements, its adjacency graph has an edge between each pair of vertices. Such a
graph is called a clique. If the graph is undirected, the adjacency matrix is symmetric, and conversely, if a
matrix is structurally symmetric, its adjacency graph is undirected.

19.5.1 Permutation

Graphs are often used to indicate relations between objects in the real world. One example would be
‘friend-of’ relations in Facebook. In such cases, the nodes in a graph do not have a natural numbering: they
are identified by a name, and any numbering is artificial. Thus, we could wonder which graph properties
remain invariant, and which ones change, if we apply a different numbering.

Renumbering a set of objects can be modeled algebraically by multiplying the adjacency matrix by a
permutation matrix.

Definition 5 A permutation matrix is a square matrix where each row and column has exactly one element
equal to one; all other elements are zero.

Exercise 19.4. Let a set of 𝑁 objects 𝑥1, … , 𝑥𝑁 be given. What is the permutation matrix that
orders them as 𝑥1, 𝑥3, … , 𝑥2, 𝑥4, …? That is, find the matrix 𝑃 such that

⎛
⎜
⎜
⎜
⎜
⎝

𝑥1
𝑥3
⋮
𝑥2
𝑥4
⋮

⎞
⎟
⎟
⎟
⎟
⎠

= 𝑃 (
𝑥1
⋮

𝑥𝑁
)

Exercise 19.5. Show that the eigenvalues of a matrix are invariant under permutation.

19.5.2 Irreducibility

As an example of a graph concept that has an easy interpretation in the adjacency matrix, consider re-
ducibility.

Definition 6 A (directed) graph is called irreducible if for every pair 𝑖, 𝑗 of nodes there is a path from 𝑖 to 𝑗
and from 𝑗 to 𝑖. A graph is reducible if it is not irreducible.

Exercise 19.6. Let 𝐴 be a matrix

𝐴 = (𝐵 𝐶
∅ 𝐷) (19.1)
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where 𝐵 and 𝐷 are square matrices. Prove the reducibility of the graph of which this is
the adjacency matrix.

The matrix in equation 19.1 is block upper triangular matrix. This means that solving a system 𝐴𝑥 = 𝑏 is
solved in two steps, each of size 𝑁/2, if 𝑁 is the size of 𝐴.
Exercise 19.7. Show that this makes the arithmetic complexity of solving 𝐴𝑥 = 𝑏 lower than

for a general 𝑁 × 𝑁 matrix.
If we permute a graph, its reducibility or irreducibility is not changed. However, it may now no longer be
apparent from looking at the adjacency matrix.

19.5.3 Graph closure

Here is another example of how adjacency matrices can simplify reasoning about graphs.

Definition 7 Let 𝐺 = ⟨𝑉 , 𝐸⟩ be an undirected graph, then we define the closure of 𝐺 as 𝐺′ = ⟨𝑉 , 𝐸′⟩ be the
graph with the same vertices, but with vertices defined by

(𝑖, 𝑗) ∈ 𝐸′ ⇔ ∃𝑘 ∶ (𝑖, 𝑘) ∈ 𝐸 ∧ (𝑘, 𝑗) ∈ 𝐸.

As a small example:

Exercise 19.8. If 𝑀 is the adjacency matrix of 𝐺, show that 𝑀2 is the adjacency matrix of 𝐺′,
where we use boolean multiplication on the elements: 1 ⋅ 1 = 1, 1 + 1 = 1.

19.6 Spectral graph theory
With a graph 𝐺1 and its adjacency matrix 𝐴𝐺 , we can define a stochastic matrix or Markov matrix by
scaling 𝐴𝐺 to have unit row sums:

𝑊𝐺 = 𝐷−1𝐺 𝐴𝐺 where (𝐷𝐺)𝑖𝑖 = deg(𝑖).
To see how we interpret this, let’s look at a simple example. Let’s take an unweighted graph with an
adjacency matrix

𝐴𝐺 =
⎛
⎜
⎜
⎝

1 1 1
1 1

1 1 1
1 1

⎞
⎟
⎟
⎠

1. This section owes much to Dan Spielman’s course on spectral graph theory http://www.cs.yale.edu/homes/
spielman/561/.
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and look at the second row, which says that there are edges (2, 3) and (2, 4). This means that if you are on
node 2, you can go to nodes 3 and 4. Scaling this matrix we get

𝑊𝐺 =
⎛
⎜
⎜
⎝

1/3 1/3 1/3
1/2 1/2

1/3 1/3 1/3
1/2 1/2

⎞
⎟
⎟
⎠

and now the second row says that from node 2 you can get with equal probability to nodes 3 and 4. You
can also derive this statement mathematically:

(0 1 0 0)𝑊𝐺 = (0 0 1/2 1/2)
It is simple to extrapolate that: if 𝑝 is a vector where the 𝑖-th component gives the probability of being in
node 𝑖, then (𝑝𝑡𝑊𝐺)𝑖 is the probability of being in node 𝑖 if you take one more step along a graph edge.

Exercise 19.9. Prove that 𝑝𝑡𝑊𝐺 is indeed a vector of probabilities. Hint: you can express that
𝑝 is a probability vector as 𝑝𝑡 𝑒 = 𝑒, where 𝑒 is the vector of all ones.

19.6.1 The graph Laplacian

Another matrix to associate with a graph is the graph Laplacian

𝐿𝐺 = 𝐷𝐺 − 𝐴𝐺 .
This matrix has zero rowsums and positive diagonal entries, so by the Gershgorin theorem (section 13.5
all its eigenvalues are in the complex right half plane.

Exercise 19.10. Show that the vector of all ones is an eigenvector with eigenvalue 1.

This Laplacian matrix gives us a quadratic form:

𝑥 𝑡𝐿𝐺𝑥 = ∑
(𝑖,𝑗)∈𝐸

(𝑥𝑖 − 𝑥𝑗)2.

19.6.2 Domain decomposition through Laplacian matrices

There are various interesting theorems connected with the graph adjacency and Laplacian matrix. These
have a very practical application to domain decomposition.

We get our inspiration of elliptic PDEs.

Connected with the Laplace equation −Δ𝑢 = 𝑓 is an operator 𝐿𝑢 = −Δ𝑢. On the unit interval [0, 1] the
eigenfunctions of this operator, that is, the functions for which 𝐿𝑢 = 𝜆𝑢, are 𝑢𝑛(𝑥) = sin 𝑛𝜋𝑥 for 𝑛 > 0.
These have the property that 𝑢𝑛(𝑥) has 𝑛 − 1 zeros in the interior of the interval, and they divide the
interval in 𝑛 connected regions where the function is positive of negative. Thus, if you wanted to divide
a domain Ω over 𝑝 processors, you could consider the 𝑝-th eigenfunction of the Laplacian on Ω, and find
the connected regions where it is positive or negative.

This statement about PDE has a graph equivalent in two versions of Fiedler’s theorem. (We will not give
any proofs in this section; see [175].)
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Theorem 7 Let 𝐺 be a weighted path graph on 𝑛 vertices, let 𝐿𝑃 have eigenvalues 0 = 𝜆1 < 𝜆2 ≤ … ≤ 𝜆𝑛,
and let 𝑣𝑘 be an eigenvector of 𝜆𝑘 . Then 𝑣𝑘 changes sign 𝑘 − 1 times.

The second theorem is more useful [62]:

Theorem 8 Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted connected graph, and let 𝐿𝐺 be its Laplacian matrix. Let 0 =
𝜆1 < 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 be the eigenvalues of 𝐿𝐺 and let 𝑣1, … , 𝑣𝑛 be the corresponding eigenvectors. For any 𝑘 ≥ 2,
let 𝑊𝑘 = {𝑖 ∈ 𝑉 ∶ 𝑣𝑘(𝑖) ≥ 0}. Then, the graph induced by 𝐺 on 𝑊𝑘 has at most 𝑘 − 1 connected components.

The important consequence of this is that the eigenvector to the first nontrivial eigenvalue can be used
to partition the graph in two connected piecesone of nodes where the eigenvector is positive, and one
where the eigenvector is negative. This eigenvector is known as the Fiedler vector . The adjacency matrix
is nonnegative, and there is an extensive theory for this type of matrix [13]; see the Perron-Frobenius
theorem in section 13.4.

In general there are no guarantees for how good a decomposition this is, measured by the ratio of the
numbers of edges, but in practice it can be shown that the behaviour is pretty good [176].

19.6.3 Cheeger’s inequality

Above we remarked that the first non-trivial eigenvalue of the graph Laplacian has a relation to parti-
tioning a graph in two parts. The Cheeger’s constant and Cheeger’s inequality relate this eigenvalue to a
certain quality measure of partitionings.

Let 𝑉 be the set of vertices and 𝑆 ⊂ 𝑉 , then Cheeger’s constant of a graph is defined as

𝐶 = min𝑆
𝑒(𝑆, 𝑉 − 𝑆)

min vol(𝑆), vol(𝑉 − 𝑆)
where 𝑒(𝑆, 𝑉 − 𝑆) denotes the number of edges connecting 𝑆 to 𝑉 − 𝑆, and the volume of a set of nodes is
defined as

vol(𝑆) = ∑
𝑒∈𝑆

𝑑(𝑒).

Cheeger’s inequality then states

2𝐶 ≥ 𝜆 ≥ 𝐶2
2

where 𝜆 is the first nontrivial eigenvalue of the graph Laplacian.
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Chapter 20

Automata theory

Automata are mathematical abstractions of machines. There is an extensive theory of automata; here we
will only touch on the basic concepts. Let us start with a simple example.

20.1 Finite State Automata

A Finite State Automaton (FSA) is a very simple machine, something on the order of a vending machine
that will dispense a candy bar when a quarter has been inserted. There are four actions possible with
a vending machine: insert a quarter, press ‘coin return’ to ask for any inserted money back, open the
window to take the candy bar, and close the window again. Whether an action is possible (especially the
third) depends on the state the machine is in. There are three states: the begin state, the state where the
quarter has been inserted and the window unlocked (let us call this ‘ready to dispense’), and the state
where the window is open (which we will call ‘dispensing’).

In certain states, certain actions are not possible. For instance, in the beginning state the window can not
be opened.

The mathematical description of this vending machine consists of 1. the list of states, 2. a table of how the
possible actions make the machine go from one state to another. However, rather than writing down the
table, a graphical representation is usually more insightful.

20.2 General discussion

From the vendingmachine example, you saw an important characteristic of an automaton: it allows certain
actions, but only in some circumstances, and in the end it has a state corresponding to ‘success’, which is
only reached if certain sequences of actions are taken.

The formal description of this process is as follows: we call the individual actions an ‘alphabet’, and a
sequence of actions a ‘word’ from based on that alphabet. The ‘success’ result of a machine then corre-
sponds to a verdict that a certain word belong to the ‘language’ that is accepted by the automaton. Thus
there is a correspondence between automata theory and language theory.
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Figure 20.1: A simple real-life automaton.

Exercise 20.1. Consider the alpha {𝑎, 𝑏}, that is, the alphabet with only the letters 𝑎, 𝑏, and con-
sider the language {𝑎𝑚𝑏𝑛 ∶ 𝑚, 𝑛 > 0}, that is the words that consist of one or more 𝑎s
followed by one or more 𝑏s. Draw the automaton that accepts this language.

What makes the FSA the simplest type is that it has no memory. Most vending machines do not complain
if you put in more than one quarter: they have no memory beyond ‘a quarter has been inserted’. A more
complicated machine would count how many quarters you inserted, and then allow you to open that
many windows to different candy bars. In the above formal way of describing, that machine would accept
the language {𝑞𝑛𝑤𝑛 ∶ 𝑛 ≥ 0}, that is, the sequences where you deposit as many quarters (‘𝑞’) as you
open windows (‘𝑤 ’). This language is an example of a so-called context-free language; the language of the
original vending machine is a regular language.

These two language types belong to the four level Chomsky hierarchy of languages. The famous Turing
machine, which recognizes the recursively enumerable language type, is on the top level of the hierar-
chy. The missing step has the context-sensitive language type, which is recognized by a linear bounded
automaton.
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Chapter 21

Parallel Prefix

For operations to be executable in parallel they need to be independent. That makes recurrences prob-
lematic to evaluate in parallel. Recurrences occur in obvious places such as solving a triangular system of
equations (section 5.3.4), but they can also appear in sorting and many other operations.

In this appendix we look at parallel prefix operations: the parallel execution of an operation that is defined
by a recurrence involving an associative operator. (See also section 6.10.2 for the ‘recursive doubling’ ap-
proach to parallelizing recurrences.) Computing the sum of an array of elements is an example of this type
of operation (disregarding the non-associativity for the moment). Let 𝜋(𝑥, 𝑦) be the binary sum operator:

𝜋(𝑥, 𝑦) ≡ 𝑥 + 𝑦,
then we define the prefix sum of 𝑛 ≥ 2 terms as

Π(𝑥1, … , 𝑥𝑛) = {𝜋(𝑥1, 𝑥2) if 𝑛 = 2
𝜋(Π(𝑥1, … , 𝑥𝑛−1), 𝑥𝑛) otherwise

As a non-obvious example of a prefix operation, we could count the number of elements of an array that
have a certain property.
Exercise 21.1. Let 𝑝(⋅) be a predicate, 𝑝(𝑥) = 1 if it holds for 𝑥 and 0 otherwise. Define a binary

operator 𝜋(𝑥, 𝑦) so that its reduction over an array of numbers yields the number of
elements for which 𝑝 is true.

So let us now assume the existence of an associative operator ⊕, an array of values 𝑥1, … , 𝑥𝑛. Then we
define the prefix problem as the computation of 𝑋1, … , 𝑋𝑛, where

{𝑋1 = 𝑥1
𝑋𝑘 = ⊕𝑖≤𝑘𝑥𝑖

21.1 Parallel prefix
The key to parallelizing the prefix problem is the realization that we can compute partial reductions in
parallel:

𝑥1 ⊕ 𝑥2, 𝑥3 ⊕ 𝑥4, …
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are all independent. Furthermore, partial reductions of these reductions,

(𝑥1 ⊕ 𝑥2) ⊕ (𝑥3 ⊕ 𝑥4), …
are also independent. We use the notation

𝑋𝑖,𝑗 = 𝑥𝑖 ⊕ ⋯ ⊕ 𝑥𝑗
for these partial reductions.

You have seen this before in section 2.1: an array of 𝑛 numbers can be reduced in ⌈log2 𝑛⌉ steps. What is
missing in the summation algorithm to make this a full prefix operation is computation of all intermediate
values.

Observing that, for instance, 𝑋3 = (𝑥1 ⊕ 𝑥2) ⊕ 𝑥3 = 𝑋2 ⊕ 𝑥3, you can now imagine the whole process;
see figure 21.1 for the case of 8 elements. To compute, say, 𝑋13, you express 13 = 8 + 4 + 1 and compute

Figure 21.1: A prefix operation applied to 8 elements.

𝑋13 = 𝑋8 ⊕ 𝑋9,12 ⊕ 𝑥13.
In this figure, operations over the same ‘distance’ have been vertically aligned corresponding to a SIMD
type execution. If the execution proceeds with a task graph, some steps can be executed earlier than the
figure suggests; for instance 𝑋3 can be computed simultaneously with 𝑋6.
Regardless the arrangement of the computational steps, it is not hard to see that the whole prefix calcu-
lation can be done in 2 log2 𝑛 steps: log2 𝑛 steps for computing the final reduction 𝑋𝑛, then another log2 𝑛
steps for filling in the intermediate values.

21.2 Sparse matrix vector product as parallel prefix
It has been observed that the sparse matrix vector product can be considered a prefix operation; see [16].
The reasoning here is we first compute all 𝑦𝑖𝑗 ≡ 𝑎𝑖𝑗𝑥𝑗 , and subsequently compute the sums 𝑦𝑖 = ∑𝑗 𝑦𝑖𝑗 with
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a prefix operation.

A prefix sum as explained above does not compute the right result. The first couple of 𝑦𝑖𝑗 terms do indeed
sum to 𝑦1, but then continuing the prefix sum gives 𝑦1 + 𝑦2, instead of 𝑦2. The trick to making this work
is to consider two-component quantities ⟨𝑦𝑖𝑗 , 𝑠𝑖𝑗⟩, where

𝑠𝑖𝑗 = {1 if 𝑗 is the first nonzero index in row 𝑖
0 otherwise

Now we can define prefix sums that are ‘reset’ every time 𝑠𝑖𝑗 = 1.

21.3 Horner’s rule

Horner’s rule for evaluating a polynomial is an example of a simple recurrence:

𝑦 = 𝑐0𝑥𝑛 + ⋯ + 𝑐𝑛𝑥0 ≡
⎧
⎨
⎩

𝑡0 ← 𝑐0
𝑡𝑖 ← 𝑡𝑖−1 ⋅ 𝑥 + 𝑐𝑖 𝑖 = 1, … , 𝑛
𝑦 = 𝑡𝑛

(21.1)

or, written more explicitly

𝑦 = (((𝑐0 ⋅ 𝑥 + 𝑐1) ⋅ 𝑥 + 𝑐2)⋯) .
Like many other recurrences, this seemingly sequential operation can be parallelized:

𝑐0𝑥 + 𝑐1 𝑐2𝑥 + 𝑐3 𝑐4𝑥 + 𝑐5 𝑐6𝑥 + 𝑐7
⋅ × 𝑥2 + ⋅ ⋅ × 𝑥2 + ⋅

⋅ × 𝑥4 + ⋅

However, we see here that some cleverness is needed: we need 𝑥, 𝑥2, 𝑥4 etc. to multiply subresults.

Interpreting Horner’s rule as a prefix scheme fails: the ‘horner operator’ ℎ𝑥 (𝑎, 𝑏) = 𝑎𝑥 + 𝑏 is easily seen
not to be associative. From the above treewise calculation we see that we need to carry and update the 𝑥 ,
rather than attaching it to the operator.

A little experimenting shows that

ℎ ([ 𝑎
𝑥 ] , [ 𝑏

𝑦 ]) ≡ [ 𝑎𝑦 + 𝑏
𝑥𝑦 ]

serves our purposes:

ℎ ([ 𝑎
𝑥 ] , [ 𝑏

𝑦 ] , [ 𝑐
𝑧 ]) =

⎧⎪
⎨⎪⎩

ℎ (ℎ ([ 𝑎
𝑥 ] , [ 𝑏

𝑦 ]) , [ 𝑐
𝑧 ]) = ℎ ([ 𝑎𝑦 + 𝑏

𝑥𝑦 ] , [ 𝑐
𝑧 ])

ℎ ([ 𝑎
𝑥 ] , ℎ ([ 𝑏

𝑦 ] , [ 𝑐
𝑧 ])) = ℎ ([ 𝑎

𝑥 ] , [ 𝑏𝑧 + 𝑐
𝑦𝑧 ])

⎫⎪
⎬⎪⎭

= [ 𝑎𝑦𝑧 + 𝑏𝑧 + 𝑐
𝑥𝑦𝑧 ]
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With this we can realize Horner’s rule as

ℎ ([ 𝑐0
𝑥 ] , [ 𝑐1

𝑥 ] , … , [ 𝑐𝑛
𝑥 ])

As an aside, this particular form of the ‘horner operator’ corresponds to the ‘rho’ operator in the program-
ming language APL, which is normally phrased as evaluation in a number system with varying radix.
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Chapter 22

Class projects

Here are some suggestions for end-of-semester projects that feature a combination of coding and analysis.
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Chapter 23

Teaching guide

The material in this book is far more than will fit a one-semester course. Here are a couple of strategies
for how to teach it as a course, or incorporate it in an other course.

23.1 Standalone course

23.2 Addendum to parallel programming class

Suggested teachings and exercises:

Parallel analysis: 2.12, 2.13, 2.16.

Architecture: 2.32, 2.33, 2.35, 2.37.

Complexity: 2.38

23.3 Tutorials

23.4 Cache simulation and analysis

In this project you will build a cache simulator and analyze the cache hit/miss behaviour of code, either
real or simulated.

23.4.1 Cache simulation

A simulated cache is a simple data structure that records for each cache address what memory address it
contains, and how long the data has been present. Design this data structure and write the access routines.
(Use of an object oriented language is recommended.)

Write your code so that your cache can have various levels of associativity, and different replacement
policies.

For simplicity, do not distinguish between read and write access. Therefore, the execution of a program
becomes a stream of
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cache.access_address( 123456 );
cache.access_address( 70543 );
cache.access_address( 12338383 );
.....

calls where the argument is thememory address. Your codewill recordwhether the request can be satisfied
from cache, or whether the data needs to be loaded from memory.

23.4.2 Code simulation

Find some example codes, for instance from a scientific project you are involved in, and translate the code
to a sequence of memory address.

You can also simulate codes by generating a stream of access instructions as above:

• Some access will be to random locations, corresponding to use of scalar variables;
• At other times access will be to regularly space addresses, corresponding to the use of an array;
• Array operations with indirect addressing will cause prolonged episodes of random address ac-
cess.

Try out various mixes of the above instruction types. For the array operations, try smaller and larger
arrays with various degrees of reuse.

Does your simulated code behave like a real code?

23.4.3 Investigation

First implement a single cache level and investigate the behaviour of cache hits and misses. Explore dif-
ferent associativity amounts and different replacement policies.

23.4.4 Analysis

Do a statistical analysis of the cache hit/miss behaviour. You can start with [164]1. Hartstein [96] found a
power law behaviour. Are you finding the same?

1. Strictly speaking that paper is about page swapping out of virtual memory (section 1.4.4.2), but everything translates to
cacheline swapping out of main memory.
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23.5 Evaluation of Bulk Synchronous Programming

In this project you’re asked to analyze the Bulk Synchronous Parallel (BSP) model, both abstractly and by
simulation.

23.5.1 Discussion

For your assignment you need to investigate Bulk Synchronous Programming. Read the wikipedia article
http://en.wikipedia.org/wiki/Bulk_synchronous_parallel and section 2.6.8 in the book.

Consider the following questions.

1. Discuss the relation between the complexity model of BSP and the 𝛼, 𝛽, 𝛾 model you learned in
section 6.1.

2. BSP uses barrier synchronisations. Are these necesary in practice? Consider separately two dif-
ferent classes of algorithms, namely PDE solving, and large scale graph computations.

23.5.2 Simulation

In the defining paper on BSP, Valiant [182] advocates making more tasks than processors, and distributing
them randomly. Program a simulation and test if this strategy solves the load balance problem. Discuss
the random placement strategy in the context of various algorithms.
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23.6 Heat equation

In this project you will combine some of the theory and practical skills you learned in class to solve a real
world problem. In addition to writing code that solves the program, you will use the following software
practices:

• use source code control,
• give the program checkpoint/restart capability, and
• use basic profiling and visualization of the results.

The Heat Equation (see section 4.3) is given by

𝜕𝑇 (𝑥, 𝑡)
𝜕𝑡 =

⎧⎪
⎨⎪⎩

𝛼 𝜕2𝑇 (𝑥,𝑦)
𝜕𝑥2 + 𝑞(𝑥, 𝑡) 1D

𝛼 𝜕2𝑇 (𝑥,𝑦)
𝜕𝑥2 + 𝛼 𝜕2𝑇 (𝑥,𝑦)

𝜕𝑦2 + 𝑞(𝑥, 𝑡) 2D

… 3D

where 𝑡 ≥ 0 and 𝑥 ∈ [0, 1], subject to boundary conditions

𝑇 (𝑥, 0) = 𝑇0(𝑥), for 𝑥 ∈ [0, 1],

and similar in higher dimensions, and

𝑇 (0, 𝑡) = 𝑇𝑎(𝑡), 𝑇 (1, 𝑡) = 𝑇𝑏(𝑡), for 𝑡 > 0.

You will solve this problem using the explicit and implicit Euler methods.

23.6.1 Software

As PDEs go, this is a fairly simple one. In particular the regular structure makes it easy to code this project
using regular arrays to store the data. However, you can also write your software using the PETSc library.
In that case, use the MatMult routine for matrix-vector multiplication and KSPSolve for linear system
solution. Exception: code the Euler methods yourself.

Be sure to use a Makefile for building your project (tutorial Tutorials book, section 3).

Add your source files, Makefile, and job scripts to a git repository (tutorial Tutorials book, section 5); do
not add binaries or output files. Make sure that there is a README file with instructions on how to build
and run your code.

Implement a checkpoint/restart facility by writing vector data, size of the time step, and other necessary
items, to an hdf5 file (tutorial Tutorials book, section 7). Your program should be able to read this file and
resume execution.

23.6.2 Tests

Do the following tests on a single core.
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Method stability

Run your program for the 1D case with

⎧⎪
⎨⎪
⎩

𝑞 = sin ℓ𝜋𝑥
𝑇0(𝑥) = 𝑒𝑥
𝑇𝑎(𝑡) = 𝑇𝑏(𝑡) = 0
𝛼 = 1

Take a space discretization at least ℎ = 10−2 but especially in parallel do not be afraid to try large problem
sizes. Try various time steps and show that the explicit method can diverge. What is the maximum time
step for which it is stable?

For the implicit method, at first use a direct method to solve the system. This corresponds to PETSc options
KSPPREONLY and PCLU (see section 5.5.11).

Now use an iterative method (for instance KSPCG and PCJACOBI); is the method still stable? Explore using
a low convergence tolerance and large time steps.

Since the forcing function 𝑞 and the boundary conditions have no time dependence, the solution 𝑢(⋅, 𝑡)
will converge to a steady state solution 𝑢∞(𝑥) as 𝑡 → ∞. What is the influence of the time step on the
speed with which implicit method converges to this steady state?

Hint: the steady state is described by 𝑢𝑡 ≡ 0. Substitute this in the PDE. Can you find explicitly what the
steady state is?

Run these tests with various values for ℓ.

Timing

If you run your code with the commandline option -log_summary, you will get a table of timings of the
various PETSc routines. Use that to do the following timing experiments. Make sure you use a version of
PETSc that was not compiled with debug mode.

Construct your coefficient matrix as a dense matrix, rather than sparse. Report on the difference in total
memory, and the runtime and flop rate of doing one time step. Do this for both the explicit and implicit
method and explain the results.

With a sparse coefficient matrix, report on the timing of a single time step. Discuss the respective flop
counts and the resulting performance.

Restart

Implement a restart facility: every 10 iterations write out the values of the current iterate, together with
values of Δ𝑥 , Δ𝑡 , and ℓ. Add a flag -restart to your program that causes it to read the restart file and
resume execution, reading all parameters from the restart file.

Run your program for 25 iterations, and restart, causing it to run again from iteration 20. Check that the
values in iterations 20… 25 match.
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23.6.3 Parallelism

Do the following tests to determine the parallel scaling of your code.

At first test the explicit method, which should be perfectly parallel. Report on actual speedup attained.
Try larger and smaller problem sizes and report on the influence of the problem size.

The above settings for the implicit method (KSPPREONLY and PCLU) lead to a runtime error. One way out
is to let the system be solved by an iterative method. Read the PETSc manual and web pages to find out
some choices of iterative method and preconditioner and try them. Report on their efficacy.

23.6.4 Comparison of solvers

In the implicit timestepping method you need to solve linear systems. In the 2D (or 3D) case it can make
a big difference whether you use a direct solver or an iterative one.

Set up your code to run with 𝑞 ≡ 0 and zero boundary conditions everywhere; start with a nonzero initial
solution. You should now get convergence to a zero steady state, thus the norm of the current solution is
the norm of the iterate.

Now do the following comparison; take several values for the time step.

Direct solver

If your PETSc installation includes direct solvers such as MUMPS, you can invoke them with

myprog -pc_type lu -ksp_type preonly \
-pc_factor_mat_solver_package mumps

Run your code with a direct solver, both sequentially and in parallel, and record how long it takes for the
error to get down to 10−6.

Iterative Solver

Use an iterative solver, for instance KSPCG and KSPBCGS. Experiment with the convergence tolerance:
how many timesteps does it take to get a 10−6 error if you set the iterative method tolerance to 10−12,
how much if you take a lesser tolerance?

Compare timings between direct and iterative method.

23.6.5 Reporting

Write your report using LATEX (tutorial Tutorials book, section 15). Use both tables and graphs to report
numerical results. Use gnuplot (tutorial Tutorials book, section 9) or a related utility for graphs.
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23.7 The memory wall

In this project you explore the ramifications of the memory wall; see section 1.3. This project involves
literature search, but little programming.

23.7.1 Background

Wulf and McKee [194] observed trends in the average latency in processors. Let 𝑡𝑚 be the latency from
memory, 𝑡𝑐 the latency from cache, and 𝑝 the probability of a cache hit, then the average latency is

𝑡avg = 𝑝𝑡𝑐 + (1 − 𝑝)𝑡𝑚.

As the gap between processor speed and memory speed increases, this latency will grow, unless one can
drive 𝑝 down, that is, reduce the number of cache misses or at least lessen their importance.

23.7.2 Assignment

Do a literature search and discuss the following topics.

• What have the trends been in processor speed and memory speed? What bearing does the intro-
duction of multicore chips have on this balance?

• Section 1.4.0.4 discussed various types of cache misses. Some misses are more related to the
algorithm and some more to the hardware. What strategies have hardware designers used to less
then impact of cache misses?

• Compulsory cachemisses seem unavoidable, since they are a property of the algorithm. However,
if they can be hidden (see section 1.3.2 for ‘latency hiding’) their performance impact disappears.
Research the topic of prefetch streams and their relation to latency hiding.

• How does the size of a cacheline interact with this behaviour?
• Discuss compiler techniques that lessen the incidence of cache misses.
• Can you find examples of algorithm options, that is, algorithms that compute the same result (not
necessarily in the arithmetic sense; compare direct square root versus iterative approximation)
but with different computational behaviour?

For all of these topics you are encouraged to write simulations.
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Chapter 24

Codes

This section contains several simple codes that illustrate various issues relating to the performance of a
single CPU. The explanations can be found in section 1.8.

24.1 Preliminaries

24.1.1 Hardware event counting

The codes in this chapter make calls to a library named PAPI for ‘Performance Application Programming
Interface’ [23, 158]. This is a portable set of calls to query the hardware counters that are built into most
processors. Since these counters are part of the processor hardware, they can measure detailed events
such as cache misses without this measurement process disturbing the phenomenon it is supposed to
observe.

While using hardware counters is fairly straightforward, the question of whether what they are reporting
is what you actuallymeant tomeasure is anothermatter altogether. For instance, the presence of hardware
prefetch streams (section 1.4.1) implies that data can be loaded into cache without this load being triggered
by a cache miss. Thus, the counters may report numbers that seem off, or even impossible, under a naive
interpretation.

24.1.2 Test setup

In the next sections you will see several codes that try to do precise timings on some phenomenon. This
requires some care if you want to be sure you are actuallying timing what you’re interested in, and not
something else.

First of all, of course you perform your experiment multiple times to get a good average timing. If the indi-
vidual timings are too far apart, you can decide to throw away outliers, or maybe rethink your experiment:
there may be a variable that you haven’t accounted for.

Let’s assume that your timings are all within an acceptable spread; next you have to compensate for cache
effects stemming from the fact that you are doing an experiment multiple times. If your problem sizes is
small, the first timing will bring all data in cache, and the second run will find it there, leading to much
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faster runtimes. You can solve this problem by, in between any pair of timings, touching an array that is
larger than the cache size. This has the effect of flushing all experiment data from the cache.

On the other hand, if you want to time something that happens on data in cache, you want to be sure
that your data is in cache, so you could for instance write to the array, bringing it in cache, prior to your
experiment. This is sometimes referred to as cache warming, and a cache that contains the problem data
is called a hot cache. Failure to warm the cache leads to an results where the first run takes appreciably
longer than the rest.

24.1.3 Memory issues

For performance reasons it is often desirable to enforce cacheline boundary alignment of data. The easiest
solution is to use static allocation, which puts the data on cacheline boundaries.

To put dynamically aligned data on cacheline boundaries, the following code does the tric:
double *a;
a = malloc( /* some number of bytes */ +8 );
if ( (int)a % 8 != 0 ) { /* it is not 8-byte aligned */

a += 1; /* advance address by 8 bytes, then */
/* either: */
a = ( (a>>3) <<3 );
/* or: */
a = 8 * ( ( (int)a )/8 );

}

This code allocates a block of memory, and, if necessary, shifts it right to have a starting address that is a
multiple of 8.

However, a better solution is to use posix_memalign:
int posix_memalign(

void **memptr, size_t alignment, size_t size);

which allocates size bytes, aligned to a multiple of alignment bytes. For example:
double x;
posix_memalign( (void**)&x,64,N*sizeof(double) );

will allocate 64 doubles for x, and align the array to cacheline boundaries if there are 8 words per cacheline.

(If the Intel compiler complains about posix_memalign being declared implicitly, add the -std=gnu99
flag to the compile line.)

24.2 Cache size
This code demonstrates the fact that operations are more efficient if data is found in L1 cache, than in L2,
L3, or main memory. To make sure we do not measure any unintended data movement, we perform one
iteration to bring data in the cache before we start the timers.

size.c
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#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */

#define PCHECK(e) \
if (e!=PAPI_OK) \

{printf("Problem in papi call, line %d\n",__LINE__); return 1;}
#define NEVENTS 3
#define NRUNS 200
#define L1WORDS 8096
#define L2WORDS 100000

int main(int argc, char **argv)
{

int events[NEVENTS] =
{
PAPI_TOT_CYC,/* total cycles */
PAPI_L1_DCM, /* stalls on L1 cache miss */
PAPI_L2_DCM, /* stalls on L2 cache miss */

};
long_long values[NEVENTS];
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int retval,event_code, m,n, i,j,size, arraysize;
const PAPI_substrate_info_t *s = NULL;
double *array;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);
{

int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]) ; PCHECK(retval);
}

}

/* declare an array that is more than twice the L2 cache size */
arraysize=2*L2WORDS;
array = (double*) malloc(arraysize*sizeof(double));

for (size=L1WORDS/4; size<arraysize; size+=L1WORDS/4) {
printf("Run: data set size=%d\n",size);

/* clear the cache by dragging the whole array through it */
for (n=0; n<arraysize; n++) array[n] = 0.;
/* now load the data in the highest cache level that fits */
for (n=0; n<size; n++) array[n] = 0.;

retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
/* run the experiment */
for (i=0; i<NRUNS; i++) {

for (j=0; j<size; j++) array[j] = 2.3*array[j]+1.2;
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}
retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("size=%d\nTot cycles: %d\n",size,values[0]);
printf("cycles per array loc: %9.5f\n",size,values[0]/(1.*NRUNS*size));
printf("L1 misses:\t%d\nfraction of L1 lines missed:\t%9.5f\n",
values[1],values[1]/(size/8.));
printf("L2 misses:\t%d\nfraction of L2 lines missed:\t%9.5f\n",
values[2],values[2]/(size/8.));
printf("\n");

}
free(array);

return 0;
}

We also measure performance by repeatedly traversing a linked list array. This is created as:

std::iota(indices.begin(),indices.end(),0);
std::random_device r;
std::mt19937 g(r());
std::shuffle(indices.begin(), indices.end(), g);
auto data = thecache.data();
for (size_t i=0; i<indices.size(); i++)

data[i] = indices[i];

and traversed as:

auto data = thecache.data();
for (size_t i=0; i<n_accesses; i++) {

res = data[res];
}

24.3 Cachelines

This code illustrates the need for small strides in vector code. The main loop operates on a vector, pro-
gressing by a constant stride. As the stride increases, runtime will increase, since the number of cachelines
transferred increases, and the bandwidth is the dominant cost of the computation.

There are some subtleties to this code: in order to prevent accidental reuse of data in cache, the compu-
tation is preceded by a loop that accesses at least twice as much data as will fit in cache. As a result, the
array is guaranteed not to be in cache.

line.c
#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */

#define PCHECK(e) \
if (e!=PAPI_OK) \
{printf("Problem in papi call, line %d\n",__LINE__); return 1;}

#define NEVENTS 4
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#define MAXN 10000
#define L1WORDS 8096
#define MAXSTRIDE 16

int main(int argc, char **argv)
{

int events[NEVENTS] =
{PAPI_L1_DCM,/* stalls on L1 cache miss */
PAPI_TOT_CYC,/* total cycles */
PAPI_L1_DCA, /* cache accesses */
1073872914 /* L1 refills */};

long_long values[NEVENTS];
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int retval,event_code, m,n, i,j,stride, arraysize;
const PAPI_substrate_info_t *s = NULL;
double *array;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);
{

int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]) ; PCHECK(retval);
}

}

/* declare an array that is more than twice the cache size */
arraysize=2*L1WORDS*MAXSTRIDE;
array = (double*) malloc(arraysize*sizeof(double));

for (stride=1; stride<=MAXSTRIDE; stride++) {
printf("Run: stride=%d\n",stride);
/* clear the cache by dragging the whole array through it */
for (n=0; n<arraysize; n++) array[n] = 0.;

retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
/* run the experiment */
for (i=0,n=0; i<L1WORDS; i++,n+=stride) array[n] = 2.3*array[n]+1.2;
retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("stride=%d\nTot cycles: %d\n",stride,values[1]);
printf("L1 misses:\t%d\naccesses per miss:\t%9.5f\n",
values[0],(1.*L1WORDS)/values[0]);
printf("L1 refills:\t%d\naccesses per refill:\t%9.5f\n",
values[3],(1.*L1WORDS)/values[3]);
printf("L1 accesses:\t%d\naccesses per operation:\t%9.5f\n",
values[2],(1.*L1WORDS)/values[2]);
printf("\n");

}
free(array);
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return 0;
}

24.4 Cache associativity

This code illustrates the effects of cache associativity;see sections 1.4.0.10 and 1.8.7 for a detailed expla-
nation. A number of vectors (dependent on the inner loop variable i) is traversed simultaneously. Their
lengths are chosen to induce cache conflicts. If the number of vectors is low enough, cache associativity
will resolve these conflicts; for higher values of m the runtime will quickly increase. By allocating the
vectors with a larger size, the cache conflicts go away.

assoc.c
#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */

#define PCHECK(e) if (e!=PAPI_OK) \
{printf("Problem in papi call, line %d\n",__LINE__); \
return 1;}

#define NEVENTS 2
#define MAXN 20000

/* we are assuming array storage in C row mode */
#if defined(SHIFT)
#define INDEX(i,j,m,n) (i)*(n+8)+(j)
#else
#define INDEX(i,j,m,n) (i)*(n)+(j)
#endif

int main(int argc, char **argv)
{

int events[NEVENTS] = {PAPI_L1_DCM,PAPI_TOT_CYC};
long_long values[NEVENTS];
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int retval,event_code, m,n, i,j;
const PAPI_substrate_info_t *s = NULL;
double *array;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);
{
int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]); PCHECK(retval);
}

}
/*
if (argc<3) {
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printf("Usage: assoc m n\n"); return 1;
} else {

m = atoi(argv[1]); n = atoi(argv[2]);
} printf("m,n = %d,%d\n",m,n);
*/

#if defined(SHIFT)
array = (double*) malloc(13*(MAXN+8)*sizeof(double));

#else
array = (double*) malloc(13*MAXN*sizeof(double));

#endif

/* clear the array and bring in cache if possible */
for (m=1; m<12; m++) {

for (n=2048; n<MAXN; n=2*n) {
printf("Run: %d,%d\n",m,n);

#if defined(SHIFT)
printf("shifted\n");

#endif

for (i=0; i<=m; i++)
for (j=0; j<n; j++)

array[INDEX(i,j,m+1,n)] = 0.;

/* access the rows in a way to cause cache conflicts */
retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
for (j=0; j<n; j++)

for (i=1; i<=m; i++)
array[INDEX(0,j,m+1,n)] += array[INDEX(i,j,m+1,n)];

retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("m,n=%d,%d\n#elements:\t%d\nTot cycles: %d\n",
m,n,m*n,values[1]);
printf("L1 misses:\t%d\nmisses per accumulation:\t%9.5f\n\n",
values[0],values[0]/(1.*n));

}
}
free(array);

return 0;
}

24.5 TLB

This code illustrates the behaviour of a TLB; see sections 1.4.4.2 and 1.8.6 for a thorough explanation.
A two-dimensional array is declared in column-major ordering (Fortran style). This means that striding
through the data by varying the 𝑖 coordinate will have a high likelihood of TLB hits, since all elements
on a page are accessed consecutively. The number of TLB entries accessed equals the number of elements
divided by the page size. Striding through the array by the 𝑗 coordinate will have each next element
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hitting a new page, so TLB misses will ensue when the number of columns is larger than the number of
TLB entries.

tlb.c

#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */

#define PCHECK(e) if (e!=PAPI_OK) \
{printf("Problem in papi call, line %d\n",__LINE__); \
return 1;}

#define NEVENTS 2
/* we are assuming array storage in Fortran column mode */
#define INDEX(i,j,m,n) i+j*m

double *array;

void clear_right(int m,int n) {
int i,j;
for (j=0; j<n; j++)
for (i=0; i<m; i++)

array[INDEX(i,j,m,n)] = 0;
return;

}

void clear_wrong(int m,int n) {
int i,j;
for (i=0; i<m; i++)
for (j=0; j<n; j++)

array[INDEX(i,j,m,n)] = 0;
return;

}

void do_operation_right(int m,int n) {
int i,j;
for (j=0; j<n; j++)
for (i=0; i<m; i++)

array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;
return;

}

void do_operation_wrong(int m,int n) {
int i,j;
for (i=0; i<m; i++)
for (j=0; j<n; j++)

array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;
return;

}

#define COL 1
#define ROW 2
int main(int argc, char **argv)
{

int events[NEVENTS] = {PAPI_TLB_DM,PAPI_TOT_CYC};
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long_long values[NEVENTS];
int retval,order=COL;
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int event_code;
const PAPI_substrate_info_t *s = NULL;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
if (argc==2 && !strcmp(argv[1],"row")) {

printf("wrong way\n"); order=ROW;
} else printf("right way\n");

retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);

{
int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]); PCHECK(retval);
}

}

#define M 1000
#define N 2000

{
int m,n;
m = M;
array = (double*) malloc(M*N*sizeof(double));
for (n=10; n<N; n+=10) {

if (order==COL)
clear_right(m,n);

else
clear_wrong(m,n);

retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
if (order==COL)

do_operation_right(m,n);
else

do_operation_wrong(m,n);
retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("m,n=%d,%d\n#elements:\t%d\n",m,n,m*n);
printf("Tot cycles: %d\nTLB misses:\t%d\nmisses per column:\t%9.5f\n\n",

values[1],values[0],values[0]/(1.*n));
}
free(array);

}

return 0;
}

468 Introduction to High Performance Scientific Computing



PART V

INDICES



Chapter 25

Index

2’s complement, 176

𝛼 , see latency
𝛽 , see bandwidth
𝛾 , see computation rate

activation function, 397
active messages, 130
acyclic graph, see graph, acyclic
Adaptive Mesh Refinement (AMR), 359
address space, 95

shared, 95
adjacency

graph, 249, 440
matrix, 375, 381, 440

Advanced Vector Extensions (AVX), 93, 157, 387
affinity, 96, 108–110, 123

close, 109
mask, 109
process, 96
spread, 109

all-reduce
in Deep Learning, 403

all-to-all, 365–367
allgather, 281–282, 287, 291
Alliant FX/8, 37
allocation

static, 461
allreduce, 281
AMD, 93, 171

Barcelona, 31, 35

Opteron, 36, 59, 60
Amdahl’s law, 81–84
anti dependency, see data dependencies
APL, 450
Apple

iCloud, 166
Macbook Air, 40

arithmetic
computer, see floating point arithmetic
finite precision, 174
intensity, 44

Arnoldi
restarted, 277

array processors, 92, 152
array syntax, 124
Array-Of-Structures (AOS), 135
assembly

language, 22
associativity, see cache, associative
asynchronous communication, 137
asynchronous computing, 90
atomic operation, 38, 105–107
atomicity, see atomic operation
automaton, 445–446

linear bounded, 446
autotuning, 65
AVX512, 249
axpy, 44

backtracking, 426
backwards stability, 195
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band storage, see matrix, band storage
banded matrix, 219
bandwidth, 21, 150, 156, 278

aggregate, 139
bisection, see bisection, bandwidth
measure in GT/s, 153

bandwidth-bound, 47, 51, 170, 311
Barnes-Hut algorithm, 385–386
barrier, 131
base, 179
Basic Linear Algebra Subprograms (BLAS), 44, 243,

297
BBN

Butterfly, 144
Bellman-Ford, 374
benchmarking, 27, 45
bfloat16, 205, 205
bias, 396
bidiagonal matrix, 220, 330
bidirectional exchange, 282
big data, 367
bigfloat, 192
binary, 174
binary-coded-decimal, 178
binary16, 205
bipartite graph, see graph, bipartite
birthday paradox, 147
bisection, 366

bandwidth, 139
width, 139

bit, 174
shift, 197

bitonic sequence, 368
Bitonic sort, see sorting, bitonic sort
bitonic sort, 87

sequential complexity of, 369
Black-Scholes model, 393
BLAS

3, 337
block Jacobi, 313, 332
block matrix, 222, see matrix, block, 301, 321
block tridiagonal, 222, 257, 324
blocking communication, 114, 120

blocking for cache reuse, 55
Boundary Element Method (BEM), 306
Boundary Value Problem (BVP), 216–224
branch misprediction, 19
branch penalty, 19
breadth-first, 366
Brent’s theorem, 85, 160
broadcast, 117, 279–280
Bubblesort, see sorting, bubblesort
bucket brigade algorithm, 279
buffering, 284
Bulk Synchronous Parallel (BSP), 131
bus, 20

memory, 139
speed, 21
width, 21

butterfly exchange, 143, 144–145
byte, 175

C
language standard, 202
type

numerical range, 199
undefined behavior, 177

C++
exception, 199
language standard, 202

cache, 18, 20, 24–32
associative, 31
associativity

coding for, 60–61
practical tests, 465–466

block, 27
blocking, 55, 63, 242
coherence, 26, 37–41, 51, 97, 139, 339
flushed from, 27
hierarchy, 25, 67
hit, 25
hot, 461
line, 27–28, 48
mapping, 29
memory banks, 35
miss, 25, 33

on stall, 57
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miss, capacity, 26
miss, compulsory, 26
miss, conflict, 26
miss, invalidation, 26
oblivious programming, 67
replacement policies, 27
shared, 95
tag, 25
tag directory, 39
warming, 461

cacheline
boundary alignment, 28, 461
invalidation, 38

Cannon’s algorithm, see matrix-matrix product,
Cannon’s algorithm

capability computing, 167–168
capacity computing, 167–168
Cartesian mesh, 140
Cartesian product, 129
Cayley-Hamilton theorem, 267
ccNUMA, 97
CDC

Cyber205, 94
Cell processor, 153
cfenv, 198
channel rate, 150
channel width, 150
Chapel, 124, 127–128
characteristic polynomial, see polynomial, charac-

teristic
characteristics, 327
Charm++, 130
checkerboard ordering, 222
Cheeger’s

constant, 444
inequality, 444

chess, 100
chip

fabrication, 43
Cholesky factorization, 237, 337
Chomsky hierarchy, 446
Cilk Plus, 110
cleanup code, 54

climits, 199
clique, 441
clock speed, 17
Clos network, 146
cloud computing, 164–167

service models, 166
cluster, 42

node, see node
clusters, 93, 94

Beowulf, 94
Co-array Fortran (CAF), 127
co-processor, 152–153, 172
coercive, 223
coherence, 43

cache, 124
collective communication, 117, 120, 278–282
collective operation, 118, 150, 278–282

long vector, 280
short vector, 279

color number, 323
coloring, 323
colour number, 439
column-major, 245, 299
communication

blocking, 120
overhead, 82
overlapping computation with, 136, 336

compare-and-swap, 360, 362, 369
compiler, 65, 99, 125, 126

directives, 111, 127
optimization, 23

fast math, 200
report, 55
vs round-off, 201–203

optimization levels, 184
parallelizing, 102, 132
vectorization, 62

complex numbers, 207
complexity

amortized, 419, 419
computational, 241–242, 416
of iterative methods, see iterative methods,

complexity
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sequential, 361
space, 254–256, 416

Compressed Column Storage (CCS), 247
Compressed Row Storage (CRS), 247–249, 306
Compressed Row Storage (CRS)

performance of the matrix-vector product, 311
computation rate, 151, 278
compute-bound, 47, 170
computer arithmetic, see floating point arithmetic
concurrency, 90
condition number, 195, 410
conditionally stable, 213
congestion, 138
Conjugate Gradients (CG), 274, 327, 336
Connection Machine, 92, 171
contention, 138, 367
context, 105

switch, 105, 152, 156
control flow, 11, 19, 91, 338
conveniently parallel, 78, 100
coordinate storage, 247
coordination language, 129
core, 13, 37

vs processor, 37
correct rounding, see rounding, correct
cost-optimal, 79
Courant-Friedrichs-Lewy condition, 217
CPU-bound, see compute-bound
cpu-bound, 12
Cramer’s rule, 230
Crank-Nicolson method, 228
Cray, 301

Cray-1, 34, 94
Cray-2, 34, 94
Dragonfly, 150
T3E, 122
UNICOS, 197
X/MP, 94
XE6, 97
XMT, 105, 152
Y/MP, 94

Cray Inc., 152
Cray Research, 152

critical path, 84, 85, 294, 338
critical section, 106
crossbar, 95, 143, 149
cryptography, 418
CUDA, 92, 153–155, 172
Cuthill-McKee ordering, 257, 329
cycle (in graph), 438
cyclic distribution, 296

daemon, 72
data decomposition, 283
data dependencies, 132–134

vectorization of, 132
data flow, 11, 19, 91, 338
data model, 196
data parallel, 151, 155, 157
data parallelism, 76, 154, 402
data race, see race condition
data reuse, 20, 44

in matrix-matrix product, 297
deadlock, 90, 115, 120
DEC

Alpha, 15, 94
DEC PDP-11, 196
Deep Learning (DL), 205
degree, 138, 437
Delauney mesh refinement, 99
Dennard scaling, 70
denormalized floating point numbers, see floating

point numbers, subnormal
Dense linear algebra, 282–300
dependency, 17

anti, 133
flow, 132
output, 133

depth-first, 366
dgemm, 297
diagonal dominance, 240
diagonal storage, see matrix, diagonal storage, 246,

301
diameter, 138, 257, 438
die, 13, 25
difference stencil, see stencil, finite difference
differential operator, 217
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Dijkstra’s shortest path algorithm, 372
dining philosophers, 90
direct mapping, 29
direct methods

for linear systems, 311
Directed Acyclic Graph (DAG), 338, 438
directives, see compiler, directives
Dirichlet boundary condition, 216, 219
discretization, 212
distributed computing, 90, 164–167
divide-and-conquer, 67
domain decomposition, 315, 443
Doolittle’s algorithm, 237
double precision, 156
Dragonfly, see Cray, Dragonfly
drand48, 432
dynamic programming, 371
Dynamic Random-Access Memory (DRAM), 32, 34

Earth Simulator, 170
ebook, 166
edges, 437
efficiency, 78
eigenvalue, 410
eigenvalue problems, 277
eigenvector

dominant, 413
elliptic problems, 217, 327
Ellpack

storage, see matrix, storage, Ellpack
embarrassingly parallel, 78, 100
embedding, 140
Eratosthenes

sieve of, 369
ETA-10, 94
Ethernet, 94, 137
Euler

explicit, 211–213
implicit, 214–215

Euler forward method, 212
evicted, 32, 39
exception, 186, 187, 199

raising, 186
excess, 180

Explicit Euler
stability, 213

Explicit Euler method, 212
exponent, 179
extended precision, 188, 204, 204

Facebook, 370
factorization, see LU factorization
false sharing, 40, 113, 124
Fast Fourier Transform (FFT), 60, 402
Fast Multipole Method (FMM), 386
fast solvers, 265
fat tree, 143, 145–146

bisection width of a, 145
clusters based on, 148

fault tolerance, 169
FE_ALL_EXCEPT, 200
FE_DIVBYZERO, 199
FE_INEXACT, 199
FE_INVALID, 199
FE_OVERFLOW, 200
FE_UNDERFLOW, 200
feature, 396
feature , 396
fenv.h, 198
Fibonacci

numbers, 110
Fiedler vector, 444
Fiedler’s theorem, 443
field scaling, 70
fill locations, 253
fill-in, 251, 253–258, 328

estimates, 254–256
in graph algorithms, 372
reduction, 256–258

financial applications, 72
finite difference, 212
Finite Difference Method (FDM), 218
Finite Element Method (FEM), 224, 310
Finite State Automaton (FSA), 39, 445
finite volume method, 224
first touch, 51
first-touch, 43, 110
float.h, 198
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floating point
unit, 13–14

floating point arithmetic, 174–208
associativity of, 55, 190, 195, 447

floating point numbers
normalized, 180
representation, 179–180
subnormal, 182

flush to zero, 203
floating point pipeline, 53
flops, 18
flow dependency, see data dependencies
Floyd-Warshall algorithm, 371–372

parallelization of the, 383
flushing

pipeline, 107
Flynn’s taxonomy, 91
fork-join, 103
Fortran

language standard, 202
Fortress, 128–129
Fourier

analysis, 222
fp-model fast, 54
fp-model precise, 54
fractals, 430
Front-Side Bus (FSB), 20
Frontera, 51, 57
Full Orthogonalization Method (FOM), 271
fully associative, 31
fully connected, 137
functional parallelism, 77
functional programming, 168–170
Fused Multiply-Add (FMA), 14, 188, 204

gather, 117, 196, 281
Gauss

Jordan, 230, 372
Gauss-Seidel, 262

iteration, 327
Gaussian elimination, 229
gcc, 112

trapping exceptions, 200
gemm, 402, 404

General Purpose Graphics Processing Unit
(GPGPU), 154

Generalized Minimum Residual (GMRES), 276
Gershgorin theorem, 223, 260, 414, 443
ghost region, 129, 302, 334, 335, 394
Global Arrays, 129–130
GNU

gdb, see gdb
Goodyear

MPP, 92
Google, 131, 306, 379

Google Docs, 165–167
TPU, 299

Goto
Kazushige, 297

GPU
memory banks, see memory banks, on GPU

gradient descent, 400, 425
Gram-Schmidt, 271, 410–412

modified, 271, 411
granularity, 97, 101, 105
Grape computer, 153, 386
graph

acyclic, 438
adjacency, 257, see adjacency, graph
analytics, 370
bipartite, 322, 374, 439
coloring, 323, 324
colouring, 439–440
directed, 437
Laplacian, 161, 374, 443
planar, 320
random, 379
separable, 439
social, 370
theory

of parallel computers, 138
theory, spectral, 320
tree, 439
undirected, 138, 250, 437
unweighted, 438
weighted, 438

graph theory
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of sparse matrices, 249
Graphics Processing Unit (GPU), 62, 94, 154–157,

171, 186, 307, 329
Gray code, 142
grid (CUDA), 155
grid computing, 165
guard digit, 188
Gustafson’s law, 82–83

Hadamard product, 400
Hadoop, 169
Hadoop File System (HDFS), 169
halfbandwidth, 246, 254

left, 246
right, 246

halo, see ghost region
handshake protocol, 124
Harwell-Boeing matrix format, 247
hash function, 169
heap, 102
heat equation, 217, 224
Hessenberg matrix, 269
heterogeneous computing, 172
hexfloat, 198
High Performance Fortran (HPF), 124, 127
High-Performance Computing (HPC), 129, 165
HITS, 380
Horner’s rule, 268, 332, 382, 449
Horovod, 403
host process, 152
host processor, 172
Householder reflectors, 415

in LU factorization, 235
hybrid computing, 123–124
Hyperbolic PDEs, 216
hypercube, 141
hyperthreading, 36, 103, 105, 111
hypervisor, 97

I/O subsystem, 18
IBM, 129, 137, 178, 180, 182

BlueGene, 97, 149, 171
Power 5, 15
Power series, 94

Power6, 178
Roadrunner, 72, 153

ICL
DAP, 92, 152

idle, 158
idle time, 121
IEC 559, see IEEE, 754
IEEE

754, 184
854, 185

IEEE 754, 174, 178, 180
revision 2008, 187

ILP32, 196
ILP64, 197
imbalance

load, 131
incidence matrix, 380
Incomplete LU (ILU), 265
Incomplete LU (ILU)

parallel, 324–326
independent sets, 439
indirect addressing, 248
Inf, 182, 185, 186
Infiniband, 149
Initial Boundary Value Problem (IBVP), 224–228
Initial Boundary Value Problems (IBVP), 217
Initial Value Problem (IVP), 209–215
inner products, 309–310
instruction

handling
in-order, 13
out-of-order, 13

issue, 92
pipeline, 19

Instruction Level Parallelism (ILP), 12, 19, 70, 99
Intel, 18, 36, 37, 93, 171

8087 co-processor, 152, 204
Cascade Lake, 41, 51, 57, 203
compiler, 54, 55, 461
Cooper Lake, 205
Core i5, 40
Haswell, 15
i5, 203
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i860, 94, 153
Itanium, 22, 171
Ivy Bridge, 431
MIC, 172
Paragon, 153
Sandy Bridge, 13, 15, 25
Woodcrest, 31
Xeon Phi, 39, 42, 92, 105, 111, 124, 153, 157

bandwidth, 153
Knights Corner, 13, 157
Knights Landing, 13, 35, 157, 205
Knights Mill, 205

inter-node communication, 123
Inter-Processor Interrupt, 42
interior nodes, 439
interrupt, 182, 187

periodic, 72, 72
intra-node communication, 123
intrinsics, 33
inverse

iteration, 277
matrix, 230
of triangular matrix, 238

irreducible, 441, see reducible
Ising model, 394–395
iso-efficiency curve, 88, 289
ispc, 136
iteration

inverse, see inverse, iteration
shift-and-inverse, 277

iterative method
complexity, 276
floating point performance, 311
polynomial, 267, 267–276
stationary, 258–267

iterative methods
complexity, 276

iterative refinement, 205, 264, 264

Jacobi
iteration, 261, 327

Jacobian, 430
jitter, 72

Kahan
William, 204

kernel
CUDA, 154, 155
in Convolutional Networks, 398
tickless, 72

kind selector, 201
Kokkos, 98
Krylov method, see iterative method

language
context-free, 446
context-sensitive, 446
recursively enumerable, 446
regular, 446

Lapack, 170
Laplace equation, 217, 217, 420, 443

on the unit square, 327
Laplacian, 265
large pages, see memory, pages, large
latency, 21, 150, 278

hiding, 21, 44
latency hiding, 136
Lattice Boltzmann Methods (LBM), 186
leaf nodes, 439
level set, 257
lexicographic ordering, 220, 222, 314, 329
limits.h, 199
Linda, 129
line search, 425
linear array (of processors), 139
linear system

iterative solution, 258, 430
of 2D Poisson equation, 220
solving

in implicit methods, 226
in Newton’s method, 430

linked list, 56
LINPACK

benchmark, 45
Linpack, 170

benchmark, 51, 170
Linux

kernel, 97
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Lisp, 169
Little’s law, 33
LLP64, 196
load

balancing, 158–163
by diffusion, 161

balancing, dynamic, 160
balancing,static, 160
imbalance, 101, 366
rebalancing, 161, 162, 387
redistributing, 161, 162
unbalance, 78, 94, 113, 158

Local Area Network (LAN), 165
local solve, 313
locality, 12

core, 50
in parallel computing, 151
spatial, 27, 47, 48, 64, 366
temporal, 47

lock, 104, 106
loop, 69

dependencies, see data dependencies
nested, 61–62
tiling, 62
unrolling, 53

loop tiling, 326
loop unrolling, 202
loss function, 400
LP32, 196
LP64, 196
LU factorization, 234–243

block algorithm, 243
computation in parallel

dense, 293–296
sparse, 296–297

graph interpretation, 251
solution in parallel, 292–293

M-matrix, 219, 265
machine epsilon, see machine precision
machine precision, 183
malloc, 102
manager-worker paradigm, 99
Mandelbrot set, 100, 160

mantissa, 178, 180, 182, 184, 189
manycore, 155
MapReduce, 168, 168–170, 367

sorting, see sorting, with MapReduce
Markov

chains, 376
matrix, 442

MasPar, 92
master theorem, 417
matrix

adjacency, see adjacency, matrix
band storage, 244
bandwidth, 244

reduction, 257
block, 242, 299, 337
coefficient, 229
matrix product, 297

tiling, 64
nonnegative, 380
norms, 410

associated, 410
permutation, 441
reducible, 381
sparse

times dense matrix, 404
stochastic, 381
storage

diagonal, 245
Ellpack, 249
jagged diagonal, 249
sparse, 244–249

storage, cyclic, 295–296
strictly upper triangular, 332
structurally symmetric, 160, 250, 308
tessellation, 301
time matrix product

Goto implementation, 297
times matrix product, 402

cache oblivious, 67
Cannon’s algorithm for, 299
data reuse in, 297
Goto implementation, 299
outer-product variant, 300
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parallel, 297–300
reuse in, 45

times vector product, 282–292, 401
block algorithm, 243
reuse analysis, 68–69
sparse, see sparse, matrix-vector product

Toeplitz, 402, 404
transposition, 64, 67
unit upper triangular, 332

Matrix Market, 247
matrix format, 247

matrix ordering
minimum degree, see minimum degree order-

ing
nested dissection, see nested dissection order-

ing
red-black dissection, see red-black ordering

matrix-matrix product, 299
matrix-vector product, 68
memory

access pattern, 26
banks, 34

conflict, 34
on GPUs, 34

distributed, 95
distributed shared, 97
hierarchy, 20
model, 107
pages, 30, 35

large, 35, 36
shared, 95
stall, 21
virtual, 35
virtual shared, 97
wall, 20, 459

memory model
relaxed, 108

memory-bound, 12
mergesort, 418
Mersenne twister, 436
Message Passing Interface (MPI), 117–123
Metropolis algorithm, 394
micro-code, 203

mini-batch, 402
minimum

spanning tree, 279, 372
minimum degree ordering, 257
MIPS, 94
MKL, 157
model parallelism, 403
modified Gramm-Schmidt, seeGram-Schmidt, mod-

ified
Monte Carlo simulation, 392–393, 431
Moore’s law, 70
MPI

MPI 3.0 draft, 120
MPI_Alltoall, 365
multi-coloring, 323, 327
Multi-Threaded Architecture (MTA), 152
multi-threading, 111, 152
multicore, 19, 26, 36–42, 71, 95, 103, 242, 337

motivated by power, 71
multigrid, 270, 276, 327

smoother, 263, 312
Multiple Instruction Multiple Data (MIMD), 94
multitasking, 103
MUMPS, 458

𝑛_1/2, 16
N-body problems, 384–391
NaN, 187

programming language support, 199
NaN, 182, 186, 186
Nan, 185
natural ordering, 222
NBODY6, 386
nearest neighbor, 140
nested dissection, 257, 379
nested dissection ordering, 314–321
Neumann, see also von Neumann
Neumann boundary condition, 216, 219
neural networks, 396
Newton’s method, 266, 429

and linear system solving, see linear system,
solving

inexact, 264, 430
Newton-Raphson, see Newton’s method
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node, 42, 123, 141
in graph, 437

non-blocking communication, 116, 120, 121, 137
non-local operation, 120
Non-Uniform Memory Access (NUMA), 43, 96, 151
norm, 409
NP-complete, 168
NVidia, 98, 153

Tesla, 186

octtree, 386
hashed, 387

odd-even transposition sort, 361–362
offloading, 157
Omega network, see butterfly exchange
one-sided communication, 122–123, 129, 131
OpenMP, 62, 111–113

atomic, 41
version 4, 94

Operating System (OS), 72
option pricing, 393
order, 416
Ordinary Diffential Equation (ODE), 209–215
out-of-order, see instruction, handling, out-of-order
out-of-order execution, 131
outer product, 403
output dependency, see data dependencies
overdecomposition, 101, 131, 160, 295
overflow, 177, 181, 199
overflow bit, 178
overhead, 78
overlays, 35
oversubscription, 146, 149
owner computes, 158

page table, 35
PageRank, 306, 379, 380–382, 414
pages

memory, see memory, pages
Parabolic PDEs, 217
parallel fraction, 81
parallel prefix, see prefix operation
Parallel Random Access Machine (PRAM), 80
parallelism

average, 84
data, 92, 98, 126
dynamic, 112
fine-grained, 98
instruction-level, 73
irregular, 100

parallelization
incremental, 112

parameter sweep, 100
partial derivates, 420
Partial Diffential Equation (PDE), 216–228
Partial Differential Equation

parallel solution, 327
partial differential equations, 420
partial ordering, 338
partial pivoting, 233
Partitioned Global Address Space (PGAS), 97, 124–

130
path (graph theory), 438
PCI bus, 153
PCI-X, 157
PCI-X bus, 156
peak performance, 17, 45, 51
penta-diagonal, 222
perceptron, 396
permutation, 256
Perron vector, 380, 382
Perron-Frobenius theorem, 414
physical addresses, 30
pipeline, 15–17, 52–54

depth, 19, 70
flush, 19
length, 19
processor, 92
stall, 19

pivoting, 231–233, 239–240
diagonal, 233
full, 233
partial, 233

pivots, 231
point-to-point communication, 117
Poisson

distribution, 434
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Poisson equation, see also Laplace equation, 217,
420

polynomial
characteristic, 267
iterative method, see iterative method, polyno-

mial
iterative methods, see iterative methods, poly-

nomial
POSIX

1-2008, 432
posix_memalign, 461
power

consumption, 69–72
efficiency, 92
wall, 70

power method, 277, 380, 381, 412
PowerPC, 93
precision

double, see double precision
extended, see extended precision
machine, see machine precision
of the intermediate result, 202
single, see single precision

preconditioner, 263–266
predicate, 371
prefetch, 32–33

data stream, 32
distance, 33
hardware, 33

prefetcher
memory, 56

prefetching, 19
prefix operation, 332, 363
prefix operations

sparse matrix vector product, 448–449
Pregel, 131
Prim’s algorithm, 372
prime number

finding, 369
priority queue, 374
probability vector, 381
process, 102

affinity, see affinity

processor
graph, 161

program counter, 12, 102, 111
program order, 132
protein interactions, 370
pseudo-random numbers, see random numbers
pthreads, 103–105
PVM, 121
Python

large integers, 174

QR
method, 277

QR factorization, 411
quadratic sieve, 418
Quicksort, see sorting, quicksort, 362–364, 366
quicksort, 418

complexity of, 417
sequential complexity of, 363

NaN
quiet, 187

race condition, 40, 105, 107
radix point, 179
Radix sort, see sorting, radix sort
rand, 432
RAND_MAX, 432
rand_r, 432
random

seed, 434
random, 432
random number

generator, 433
seed, 432

random numbers, 431–436
generator

C language, 432
C++ language, 433–434
Fortran language, 434
lagged Fibonacci, 431
linear congruential, 431
parallel, 435–436
Python language, 435

random placement, 131, 162
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random_number, 434
random_r, 432
random_seed, 434
rate

computational, 90
re-association, 200, 202
real numbers

representation of, 174
recursive doubling, 17, 28, 34, 324, 330–332
recursive halving, 34
red-black ordering, 222, 263, 321–323
reduce-scatter, 282, 289, 291, 308
reducible, 250
reduction, 74, 106, 280

long vector, 280
under multi-threading, 106

reduction operations, 113
redundancy, 139
redundant computation, 335
refinement

adaptive, 162
region of influence, 216, 327
register, 11, 20, 22–23

file, 22
resident in, 23, 24
spill, 23, 54
variable, 23
vector, 93, 93

Remote Direct Memory Access (RDMA), 122
remote method invocation, 130
remote procedure call, 164
representation error

absolute, 183
relative, 183

reproducibility, 202
bitwise, 202

residual, 259
resource contention, 90
Riemann sums, 393
ring network, 139
roofline model, 45–47
round-off error analysis, 187–196

in parallel computing, 195–196

round-robin
storage assignment, 126
task scheduling, 113

rounding, 182
correct, 185, 188

routing
dynamic, 150
output, 147
packet, 145
static, 149
tables, 149

Samplesort, see sorting, samplesort, 366–367
sampling, 366
satisfyability, 77
scalability, 86–90

strong, 86, 287
weak, 86, 88, 288

Scalapack, 170
ScaleMP, 97
scaling, 86–90

horizontal, 88
industrial usage of the term, 88
problem, 82
strong, 86
vertical, 88
weak, 86

scheduling
dynamic, 101, 113, 159
fair-share, 167
job, 167
static, 113, 159

search, 78
direction, 272
in a tree, 99
web, 380

search direction, 275, 425
semaphore, 106
separable graph, see graph, separable
separable problem, 265
separator, 314, 379, 439
Sequent Symmetry, 37
sequential complexity, see complexity, sequential
sequential consistency, 107, 110, 338
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sequential fraction, 81
serialized execution, 114
SGE, 167
SGI, 152

UV, 97
shift-and-inverse

seeiteration, shift-and-inverse, 277
shortest path

all-pairs, 370, 440
single source, 370, 440

side effects, 170
sigmoid, 397
sign bit, 175, 179
NaN

signaling, 187
significand, 179, 180

integer, 204
significant digits, 190
SIMD

lanes, 93
width, 47, 136

SIMD Streaming Extensions (SSE), 93, 152, 387
Single Instruction Multiple Data (SIMD), 136
Single Instruction Multiple Thread (SIMT), 154
single precision, 156
Single Program Multiple Data (SPMD), 94, 136
singular value, 410
skyline storage, 254
Slurm, 167
small world, 379
smoothers, 270
snooping, 39, 39, 139
socket, 26, 37, 42, 42, 51, 123, 171
softmax, 397
Software As a Service (SAS), 165
sorting

bitonic, 367–369
sequential complexity of, 369

bubble sort
complexity, 360

network, 360, 369
quicksort

complexity, 359

radix sort, 364–366
parallel, 365–366

with MapReduce, 367
source-to-source transformations, 54
space-filling curve, 158, 162–163
span, 84
spanning tree, 372
Spark, 169
sparse

linear algebra, 244–258
matrix, 219, 244, 440

doubly-compressed, 383
from PDEs, 221
hyper-sparse, 383

matrix-vector product
implementation, 248
in graph theory, 370
locality in, 248
parallel, 302–308
parallel setup, 307–308
performance of, 311

spatial locality, see locality, spatial
speculative execution, 19
speedup, 78, 94
spine card, 146
srand, 432
stall, 33
Static Random-Access Memory (SRAM), 32
stationary iteration, 260
statistical mechanics, 394
std::numeric_limits, 199
stdint.h, 198
steady state, 214, 217, 225, 421, 457
steepest descent, see gradient descent
stencil, 326, 334

7-point, 224
finite difference, 221, 223, 329
five-point, 223

matrix, 274
of the lower triangular factor, 329

stencil operations
performance of, 326

step size, 275, 332, 425
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Stochastic Gradient Descent (SGD), 426
stochastic matrix, 442
Storage Area Network (SAN), 164
Strassen, 418
Strassen algorithm, see matrix, times matrix prod-

uct, Strassen algorithm for
stream operations, 326
streaming stores, 32
stride, 28, 48, 57
strip mining, 69
structurally symmetric, 441
Structure-Of-Arrays (SOA), 135
subdomain, 315
substructuring, 315
Successive Over-Relaxation (SOR), 262
summation

compensated, 200, 204
Kahan, 204

Sun
Ray, 165

superlinear speedup, 78
superscalar, 12, 19, 99
superstep, 75
supersteps, 123, 131
surface-to-volume, 101
swapped, 35
switch, 143

core, 146
leaf, 145, 151

Sycl, 98
Symmetric Multi Processing (SMP), 95, 139
Symmetric Multi Threading, see hyperthreading
symmetric positive definite (SPD), 240, 270, 274, 275
System V

3, 432
systolic

algorithm, 17
array, 17

systolic array, 404

TACC, 145
Frontera, 21
Frontera cluster, 41, 146
Ranger cluster, 42, 96, 149

Stampede cluster, 42, 149, 153
tag, see cache, tag
tag directory, 39
task, 103

parallelism, 99–100
queue, 100, 110, 375

task parallelism, 76, 77
Taylor series, 211
temporal locality, see locality, temporal
Tera Computer

MTA, 152
Terasort, 367
ternary arithmetic, 204
thin client, 165
thread, 90, 102–111, 157

affinity, 51, see affinity
blocks, 154, 155
main, 103
migration, 51, 108
private data, 105
safe, 112
safety, 106
safety, and RNGs, 432
shared data, 105
spawning, 103
team, 103
use in OpenMP, 112

thread-safe, see thread,safety
throughput computing, 154
Tianhe-1A, 153
Tianhe-2, 153
time slice, 72
time slicing, 90, 103
time-dependent problems, 327
time-stepping

explicit, 326
Titanium, 126
TLB, see Translation Look-aside Buffer

miss, 36
TLB shoot-down, 42
token ring, 137
top 500, 170–172
topology, 137
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torus, 140
clusters based on, 149

transactional memory, 107
Translation Look-aside Buffer (TLB), 35, 466
tree, see also graph, tree, 439
tree graph, see graph, tree
tridiagonal matrix, 219, 222

LU factorization, 220
truncation, 182
truncation error, 212, 218
tuple space, 129
Turing machine, 446

unconditionally stable, 214
underflow, 181

gradual, 182, 203
Unified Parallel C (UPC), 125–126
Uniform Memory Access (UMA), 95, 139, 144
unitary basis transformations, 256
universal approximation theorem, 404
unnormalized floating point numbers, see floating

point numbers, subnormal
unsigned, 175
unweighted graph, see graph, unweighted
utility computing, 165

value safety, 201
vector

instructions, 93, 329
norms, 409

pipeline, see pipeline, processor
register, see register, vector

vector processor, 92, 329
vectorization, see also data dependencies, vectoriza-

tion of
vertex cut, 374
vertices, 437
virtualization, 165
von Neumann

architecture, 13, 19
bottleneck, 20

von Neumann architectures, 10

wave equation, 327
wavefront, 327, 329–330
weak scaling, 80
weather prediction, 88
weighted graph, see graph, weighted
weights, 396
Wide Area Network (WAN), 165
Win16, 196
Win32, 196
Win64, 196
work pool, 160
World Wide Web, 370

X10, 129
x86, 171

zero
of a function, 429
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TLB Translation Look-aside Buffer
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